A spatio-temporal extension to isomap nonlinear dimension reduction.pdf

A spatio-temporal extension to isomap nonlinear dimension reduction.pdf

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
A spatio-temporal extension to isomap nonlinear dimension reduction

A Spatio-temporal Extension to Isomap Nonlinear Dimension Reduction Odest Chadwicke Jenkins cjenkins@ Department of Computer Science, Brown University, Providence, RI 02912 USA Maja J Mataric? mataric@ Robotics Research Laboratory, Center for Robotics and Embedded Systems, Computer Science Department, University of Southern California, 941 W. 37th Place, Los Angeles, CA 90089 USA Abstract We present an extension of Isomap nonlin- ear dimension reduction (Tenenbaum et al., 2000) for data with both spatial and temporal relationships. Our method, ST-Isomap, aug- ments the existing Isomap framework to con- sider temporal relationships in local neigh- borhoods that can be propagated globally via a shortest-path mechanism. Two instantia- tions of ST-Isomap are presented for sequen- tially continuous and segmented data. Re- sults from applying ST-Isomap to real-world data collected from human motion perfor- mance and humanoid robot teleoperation are also presented. 1. Introduction The process of uncovering structure underlying unla- beled data is a challenging endeavor in unsupervised learning. Recently, several methods have been pro- posed to address this problem through dimension re- duction from pairwise relationships. These include global techniques (e.g., Kernel PCA (Scho?lkopf et al., 1998), Isomap (Tenenbaum et al., 2000)), local tech- niques (e.g., Locally Linear Embedding (Roweis Saul, 2000), Manifold Charting (Brand, 2002)), and spectral clustering (Ng et al., 2001). While these pair- wise methods have exhibited great potential, several issues remain largely unaddressed, such as dealing with out-of-sample points (Bengio et al., 2003) and tempo- ral dependencies within data. Motivated by analyzing human and humanoid robot Appearing in Proceedings of the 21 st International Confer- ence on Machine Learning, Banff, Canada, 2004. Copyright 2004 by the first author. motion, we propose an a extension to Isomap for data with both spatial and temporal relationships. Two

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档