A New Short-term Power Load Forecasting Model Based on Chaotic Time Series and SVM.pdf

A New Short-term Power Load Forecasting Model Based on Chaotic Time Series and SVM.pdf

  1. 1、本文档共20页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
A New Short-term Power Load Forecasting Model Based on Chaotic Time Series and SVM

A New Short-term Power Load Forecasting Model Based on Chaotic Time Series and SVM Dongxiao Niu (North China Electric Power University, 102206, Beijing, China niudx@126.com) Yongli Wang (North China Electric Power University, 102206, Beijing, China wyl_2001_ren@163.com) Chunming Duan (North China Electric Power University, 102206, Beijing, China dchm7093@) Mian Xing (North China Electric Power University, 071003, Baoding, China ) Abstract: This paper presents a model for power load forecasting using support vector machine and chaotic time series. The new model can make more accurate prediction. In the past few years, along with power system privatization and deregulation, accurate forecast of electricity load has received increasing attention. According to the chaotic and non-linear characters of power load data, the model of support vector machines (SVM) based on chaotic time series has been established. The time series matrix has also been established according to the theory of phase-space reconstruction. The Lyapunov exponents, one important component of chaotic time series, are used to determine time delay and embedding dimension, the decisive parameters for SVM. Then support vector machines algorithm is used to predict power load. In order to prove the rationality of chosen dimension, another two random dimensions are selected to compare with the calculated dimension. And to prove the effectiveness of the model, BP algorithm is used to compare with the results of SVM. Findings show that the model is effective and highly accurate in the forecasting of short-term power load. It means that the model combined with SVM and chaotic time series learning system have more advantage than other models. Keywords: Support vector machine, Chaotic time series, Lyapunov exponents, Parameter selection, Load forecasting Categories: F.2.1, H.1.1, I.1.2, I.1.6 1 Introduction 1.1 Electric Load Forecasting Approaches As sh

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档