Bayesian False Discovery Rate Wavelet Shrinkage Theory and Applications.pdfVIP

Bayesian False Discovery Rate Wavelet Shrinkage Theory and Applications.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Bayesian False Discovery Rate Wavelet Shrinkage Theory and Applications

Bayesian False Discovery Rate Wavelet Shrinkage: Theory and Applications ILYA LAVRIK, YOON YOUNG JUNG, FABRIZIO RUGGERI, AND BRANI VIDAKOVIC Abstract. Statistical inference in the wavelet domain remains vibrant area of con- temporary statistical research because desirable properties of wavelet representations and the need of scientific community to process, explore, and summarize massive data sets. Prime examples are biomedical, geophysical, and internet related data. In this paper we develop wavelet shrinkage methodology based on testing multiple hypotheses in the wavelet domain. The shrinkage/thresholding approach by implicit or explicit simultaneous testing of many hypotheses had been considered by many researchers and goes back to the early 1990’s. Even the early proposal, the univer- sal thresholding, could be interpreted as a test of multiple hypotheses in the wavelet domain. We propose two new approaches to wavelet shrinkage/thresholding. (i) In the spirit of Efron and Tibshirani’s recent work on local false discovery rate, we propose the theoretical counterpart Bayesian Local False Discovery Rate, BLFDR, where the underlying model assumes unknown variances. This approach to wavelet shrinkage can also be connected with shrinkage based on Bayes factors. (ii) The second proposal to wavelet shrinkage explored in this paper is Bayesian False Discovery Rate, BaFDR. This proposal is based on ordering of posterior probabilities of hypotheses in Bayesian testing of multiple hypotheses. We demonstrate that both approaches result in a competitive shrinkage methods by contrasting them to some popular shrinkage techniques. KEY WORDS: Shrinkage; Multiple Hypotheses Testing, False Discovery Rate, Bayesian Local False Discovery Rate. 1 Introduction In this paper we introduce wavelet-based shrinkage based on two versions of false discovery rate: local FDR and Bayesian FDR based on selecting dominant posterior probabilities. The developed methodology is comparable to currentl

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档