Abstract Comparison of Machine Learning Techniques with Classical Statistical Models in Pre.pdfVIP
- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Abstract Comparison of Machine Learning Techniques with Classical Statistical Models in Pre
Comparison of Machine Learning Techniques with Classical Statistical Models
in Predicting Health Outcomes
Xiaowei Songa, Arnold Mitnitskib,c, Jafna Coxb, Kenneth Rockwooda,b
a Geriatric Medicine Research Unit, QEII Heath Sciences Centre, Canada
b Department of Medicine, Dalhousie University, Canada
c Faculty of Computer Science, Dalhousie University, Canada
Abstract
Several machine learning techniques (multilayer and sin-
gle layer perceptron, logistic regression, least square lin-
ear separation and support vector machines) are applied
to calculate the risk of death from two biomedical data
sets, one from patient care records, and another from a
population survey. Each dataset contained multiple
sources of information: history of related symptoms and
other illnesses, physical examination findings, laboratory
tests, medications (patient records dataset), health atti-
tudes, and disabilities in activities of daily living (survey
dataset). Each technique showed very good mortality pre-
diction in the acute patients data sample (AUC up to 0.89)
and fair prediction accuracy for six year mortality (AUC
from 0.70 to 0.76) in individuals from epidemiological da-
tabase surveys. The results suggest that the nature of data
is of primary importance rather than the learning tech-
nique. However, the consistently superior performance of
the artificial neural network (multi-layer perceptron) indi-
cates that nonlinear relationships (which cannot be dis-
cerned by linear separation techniques) can provide addi-
tional improvement in correctly predicting health out-
comes.
Keywords:
Health status, Machine learning, Classification, ROC curves.
Introduction
The prediction of health outcomes from available data is an
important problem in health research and health management.
It is usually assessed by calculating scores/indices for risk
stratification [1]. Conventionally, such scores are based on
statistical models, such as logis
您可能关注的文档
- 4268406_Liquid_detergent_composition.pdf
- 40nm-gate-sb-p-channel-guide.pdf
- 440-M2刀片简介.pdf
- 48 V HAPTER ERTEBRATES.pdf
- 49.4.120309.3_The Making of a Nation.pdf
- 45秒轻松读懂task4阅读文章-智课教育旗下智课教育.pdf
- 49US晶振规格书-8M-18-30.pdf
- 5 Lesson2 unit13.doc
- 5 Influence of permanent raised bed planting and residue management on physical and.pdf
- 5 types of sentence.pptx
- Abstract Comparison of Selected Model Evaluation Criteria for Maintenance Applications.pdf
- Abstract Contrasting Computer Networking and Data Communication Curricula.pdf
- Abstract CREATING A NOVEL MULTIPLE-FREQUENCY BASED VIBRATION BUILT UPON HUMAN PERCEPTION AN.pdf
- Abstract Frequency-Based Views to Pattern Collections.pdf
- ABSTRACT Is the wolf angry or... just hungry Inspecting, modifying and sharing characters.pdf
- Abstract Liquid Droplet in Contact with a Solid Surface.pdf
- Abstract Microstructures of Tl2Ba2CuO6 thin lms with dierent doping levels.pdf
- Abstract Model-Based Object Pose in 25 Lines of Code.pdf
- Abstract of the Ph.D. thesis.pdf
- Abstract Optimization of the Operation of Isolated Industrial Diesel Stations.pdf
文档评论(0)