Optimizing binary MRFs via extended roof duality.pdfVIP

Optimizing binary MRFs via extended roof duality.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Optimizing binary MRFs via extended roof duality

Optimizing Binary MRFs via Extended Roof Duality Technical Report MSR-TR-2007-46 Carsten Rother 1 , Vladimir Kolmogorov 2 , Victor Lempitsky 3 , Martin Szummer 1 1 Microsoft Research Cambridge {carrot, szummer}@ 2 University College London vnk@adastral.ucl.ac.uk 3 Moscow State University victorlempitsky@ /vision/cambridge/ Abstract Many computer vision applications rely on the efficient optimization of challenging, so-called non-submodular, bi- nary pairwise MRFs. A promising graph cut based ap- proach for optimizing such MRFs known as “roof duality” was recently introduced into computer vision. We study two methods which extend this approach. First, we discuss an efficient implementation of the “probing” technique intro- duced recently by Boros et al. [8]. It simplifies the MRF while preserving the global optimum. Our code is 400-700 faster on some graphs than the implementation of [8]. Sec- ond, we present a new technique which takes an arbitrary input labeling and tries to improve its energy. We give theo- retical characterizations of local minima of this procedure. We applied both techniques to many applications, in- cluding image segmentation, new view synthesis, super- resolution, diagram recognition, parameter learning, tex- ture restoration, and image deconvolution. For several ap- plications we see that we are able to find the global mini- mum very efficiently, and considerably outperform the orig- inal roof duality approach. In comparison to existing tech- niques, such as graph cut, TRW, BP, ICM, and simulated annealing, we nearly always find a lower energy. 1. Introduction Most early vision problems can be formulated in terms of Markov random fields (MRFs). Algorithms for MRF in- ference therefore are of fundamental importance for com- puter vision. The MAP-MRF approach (computing maxi- mum a posteriori configurations in an MRF) has proven to be extremely successful for many vision applications such as stereo, image segmentation, image denoising, super- r

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档