Advanced Statistical ComputingFall 2012Lecture 4.pptVIP

Advanced Statistical ComputingFall 2012Lecture 4.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Advanced Statistical ComputingFall 2012Lecture 4

Advanced Statistical Computing Fall 2012 Lecture 4 Steve Qin Collapsing and grouping Want to sample from Regular Gibbs sampler: Sample x1(t+1) from Sample x2(t+1) from … Sample xd(t+1) from Alternatively: Grouping: Collapsing, i.e., integrate out xd: * The three-schemes * standard grouping collapsing Some theory Hilbert space L2(π) of functions h(). Define thus Define forward operator F as The convergence of Markov chains is tied to the norms of the corresponding forward operators. * Three-scheme theorem Standard Fs: Grouping Fg: Collapsing Fc: Theorem The norms of the three forward operators are ordered as * Examples Murray’s data Bivariate Gaussian with mean 0 and unknown covariance matrix Σ standard collapsing * Remarks Avoid introducing unnecessary parameters into a Gibbs sampler, Do as much analytical work as possible, However, introducing some clever auxiliary variables can greatly improve computation efficiency. * Sequential Monte Carlo We wish to evaluate an integral assume h(x) ≥ 0. Riemann sum (on grid points) as approximation. Alternatively, use Monte Carlo. Select random samples uniformly on its support. * An example Both grid-point method and vanilla Monte Carlo methods wasted resources on “boring” desert area. * The basic idea Marshall (1956) suggested that one should focus on the region(s) of “importance” so as to save computational resources—importance sampling. Essential in high-dimensional models. * The algorithm To evaluate Draw from a trial distribution g(). Calculate the importance weight Approximate μ by Remark: is better than the unbiased estimator why? * An example (cont.) Use proposal function with (x,y) ? [?1,1] x [?1,1], a truncated mixture of bivariate Gaussian Vanilla Monte Carlo Importance Sampling * Sequential importance sampling For high dimensional problem, how to design trial distribution is challenging. Suppose the target density of can

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档