LinkedIn开源其分布式对象存储系统总汇.docxVIP

LinkedIn开源其分布式对象存储系统总汇.docx

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
LinkedIn 开源其分布式对象存储系统?Ambry2016-06-04?Subramanian?InfoQ“LinkedIn在Github上基于Apache 2许可证协议开源了其分布式对象存储系统Ambry。Ambry是一个是不可变对象的存储系统,非常易于扩展,它能够存储KB到GB大小的不可变对象,并且能够实现高吞吐和低延迟,该系统支持跨数据中心的双活部署,并且存储成本低廉。它特别适于存储各种媒体内容。据Linkedin的前工程主管Sriram Subramanian介绍,媒体内容在Web中已经无处不在,Linkedin中的每项新特性基本上都会与某种类型的媒体内容进行交互。这些媒体内容会存储在后端,并且主要会由内容分发网络(Content Delivery Networks,CDN)来提供服务,后台存储系统会作为CDN的原始服务器(origin server)。随着Linkedin流量的不断增长,原来所使用的媒体内容存储方案在可扩展性、可用性以及运维方面所遇到的问题越来越多。两年前,他们着手解决这些问题,而Ambry正是该项工作的结果。2013年时的媒体存储是怎样的?LinkedIn之前的系统被称为媒体服务器(因为没有一个像样的名字),这个系统由两部分组成,分别是用于媒体文件存储的Filer以及存储元数据的大型Oracle数据库。这些系统的前端是一些运行在SOLARIS上的无状态机器,它们会将请求路由到对应的Filer或数据库上。Filer是通过NFS的方式mount到无状态机器上的,并使用Java的File API进行远程访问。前端会与数据中心(DC)里面的一组缓存进行交互,从而保证如果下游系统(Filer/Oracle)出现性能问题或不可用时,前端不会受其影响。随着LinkedIn对媒体内容的需求不断增加,原有的系统在面临这些需求时,遇到了如下严重的问题:频繁出现的可用性问题:每次对文件的元数据操作出现峰值时,原有的系统都会出现延迟。当访问大量的小文件时,对元数据的操作就会增多。每次文件操作都要经过多级的转换(Java、NFS以及Filer),使其很难进行调试;难以扩展:用来存储数据和元数据的底层系统都是单体的。水平扩展元数据的存储是不可能实现的,为数据存储增加硬件也需要很多的手动过程;对小对象和大对象的支持效率低下:媒体数据集中包含了数万亿的小对象(50KB-1MB)也包括数亿的大对象(1MB-1GB)。对于小对象的存储来说,元数据操作的代价是很高昂的,而对于大数据,原有的系统缺乏端到端的流支持,难以支持新产品的使用场景;平均修复时间(MTTR,Mean Time To Repair)指标很差:老系统中的大多数组成部分在很大程度上都是黑盒,这需要获得支持许可证,并且要通过电话的方式来描述和解决问题,这会影响到MTTR;成本高昂:旧的媒体存储成本很高,再继续扩展的话,成本上已经吃不消了。如果想管理媒体的扩展性,就不能延续该方案了。在这个过程中,Linkedin探索过多种替代方案,最终还是决定自行实现更匹配其需求的解决方案。Ambry是如何运行的?设计目标在了解Ambry的设计和内部运行原理之前,明确其设计目标是很有帮助的,这决定了它的实现方式。高可用性和水平可扩展:该系统要处理实时流量,会直接影响到站点的可用性,因此它必须具有很高的可用性。另外,还希望新系统能够尽可能地实现无缝的集群扩展;降低运维的负担:分布式系统一般都会难以管理,对于频繁的集群操作,能够实现自动化是非常重要的,这能避免系统成为运维的一种负担。复杂的系统通常很难实现自动化并可靠的运行,因此新系统的设计要简单、优雅并自动化;更低的MTTR:分布式系统出现故障是难以避免的,但是很重要的一点在于快速修复故障,让各个子组件启动并运行。这就需要系统的设计简单,并且不会出现单点故障;跨DC双活:Linkedin有多个数据中心,因此所有的系统都要支持双活配置,这样的话,系统能够更新不同数据中心中的同一个对象;提升小对象和大对象的效率:请求是由小对象和大对象所组成的,小对象通常是1K到100K,超出这个范围的对象会位于大对象桶中(bucket)。要同时处理好各种大小的对象,通常来讲是很困难的。大量的小对象会给元数据带来很高的负载,造成硬盘碎片,需要很多的随机IO,而大对象则需要很好的内存管理、端到端的流处理和有限的资源使用;廉价:媒体内容很快就会占据很大的存储空间,它的另外一个特点是旧数据会变成“冷”数据,并不会频繁访问。针对这种情况有很多优化技术,包括使用密集的硬件(denser hardware)、分层存储、擦除编码以及数据去重等。在设计时,Ambry希望媒体内容能够高效存储在密集型的机器上,并且能够非常容易地使用其他优化成本的方案。概览总体上来讲,Ambry由三

文档评论(0)

1112111 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档