Heterogeneous discriminant analysis for cross-view action recognition.pdfVIP

Heterogeneous discriminant analysis for cross-view action recognition.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Heterogeneous discriminant analysis for cross-view action recognition.pdf

Neurocomputing 191 (2016) 286–295 Contents lists available at ScienceDirect Neurocomputing journal homepage: /locate/neucom Heterogeneous discriminant analysis for cross-view action recognition Wanchen Sui, Xinxiao Wu n, Yang Feng, Yunde Jia Beijing Laboratory of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing 100081, PR China article info Article history: Received 10 August 2015 Received in revised form 9 December 2015 Accepted 15 January 2016 Communicated by Yongzhen Huang Available online 18 February 2016 Keywords: Cross-view action recognition Transfer learning Discriminant analysis Heterogeneous domain adaption abstract We propose an approach of cross-view action recognition, in which the samples from different views are represented by features with different dimensions. Inspired by linear discriminant analysis (LDA), we introduce a discriminative common feature space to bridge the source and target views. Two different projection matrices are learned to respectively map the action data from two different views into the common space by simultaneously maximizing the similarity of intra-class samples, minimizing the similarity of inter-class samples and reducing the mismatch between data distributions of two views. In addition, the locality information is incorporated into the discriminant analysis as a constraint to make the discriminant function smooth on the data manifold. Our method is neither restricted to the corresponding action instances in the two views nor restricted to a speci?c type of feature. We evaluate our approach on the IXMAS multi-view action dataset and N-UCLA dataset. The experimental results demonstrate the effectiveness of our method. 2016 Elsevier B.V. All rights reserved. 1. Introduction Human action recognition in videos plays an important role in computer vision due to its wide applications in human–computer interaction, smart surveillance, and video retrieval. In order to accura

您可能关注的文档

文档评论(0)

2752433145 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档