ETMEntityTopicModelsfor.PDFVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
ETMEntityTopicModelsfor

ETM: Entity Topic Models for Mining Documents Associated with Entities Hyungsul Kim, Yizhou Sun, Julia Hockenmaier and Jiawei Han University of Illinois at Urbana-Champaign {hkim21, sun22, juliahmr, hanj}@ Abstract—Topic models, which factor each document into different topics and represent each topic as a distribution of terms, have been widely and successfully used to better understand collections of text documents. However, documents are also associated with further information, such as the set of real-world entities mentioned in them. For example, news articles are usually related to several people, organizations, countries or locations. Since those associated entities carry rich information, it is highly desirable to build more expressive, entity-based topic models, which can capture the term distributions for each topic, each entity, as well as each topic-entity pair. In this paper, we therefore introduce a novel Entity Topic Model (ETM) for documents that are associated with a set of entities. ETM not only models the generative process of a term given its topic and entity information, but also models the correlation of entity term distributions and topic term distributions. A Gibbs sampling-based algorithm is proposed to learn the model. Experiments on real datasets demonstrate the effectiveness of our approach over several state-of-the-art baselines. Keywords-topic models; data mining; entity; I. INTRODUCTION Starting with the great success of Probabilistic Latent Semantic Analysis (PLSA) [8] and Latent Dirichlet Allocation (LDA) [4], there have been numerous proposals for topic models that identify patterns of word occurrences in large collections of documents which re?ect the underlying topics represented in the collection, and can then be used to organize, search, index and browse large collection of documents [21]. While traditional topic models treat each document as a bag of words, documents are in fact associated with richer attributes: for example, n

文档评论(0)

***** + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:8016031115000003

1亿VIP精品文档

相关文档