DataMining-SouthernMethodistUniversity-SMU.ppt

  1. 1、本文档共89页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
DataMining-SouthernMethodistUniversity-SMU

11/19/01 ? Prentice Hall DATA MINING Introductory and Advanced Topics Part I Margaret H. Dunham Department of Computer Science and Engineering Southern Methodist University Companion slides for the text by Dr. M.H.Dunham, Data Mining, Introductory and Advanced Topics, Prentice Hall, 2002. Data Mining Outline PART I Introduction Related Concepts Data Mining Techniques PART II Classification Clustering Association Rules PART III Web Mining Spatial Mining Temporal Mining Introduction Outline Define data mining Data mining vs. databases Basic data mining tasks Data mining development Data mining issues Introduction Data is growing at a phenomenal rate Users expect more sophisticated information How? Data Mining Definition Finding hidden information in a database Fit data to a model Similar terms Exploratory data analysis Data driven discovery Deductive learning Data Mining Algorithm Objective: Fit Data to a Model Descriptive Predictive Preference – Technique to choose the best model Search – Technique to search the data “Query” Database Processing vs. Data Mining Processing Query Well defined SQL Query Poorly defined No precise query language Query Examples Database Data Mining Data Mining Models and Tasks Basic Data Mining Tasks Classification maps data into predefined groups or classes Supervised learning Pattern recognition Prediction Regression is used to map a data item to a real valued prediction variable. Clustering groups similar data together into clusters. Unsupervised learning Segmentation Partitioning Basic Data Mining Tasks (cont’d) Summarization maps data into subsets with associated simple descriptions. Characterization Generalization Link Analysis uncovers relationships among data. Affinity Analysis Association Rules Sequential Analysis determines sequential patterns. Ex: Time Series Analysis Example: Stock Market Predict future values Determine similar patterns over time Classify behavior Data Mining vs. KDD Knowledge Discovery in

文档评论(0)

***** + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8010045112000002

1亿VIP精品文档

相关文档