基于预测模型加扰动控制的最大功率点跟踪研究.docVIP

基于预测模型加扰动控制的最大功率点跟踪研究.doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于预测模型加扰动控制的最大功率点跟踪研究.doc

基于预测模型加扰动控制的最大功率点跟踪研究   【摘 要】分析了光伏发电系统最大功率点跟踪的基本工作原理,通过对现有控制方法的深入研究,设计了基于预测模型加扰动控制的最大功率点跟踪研究方法,仿真实验结果表明:基于预测模型加扰动控制的最大功率点跟踪研究方法不但能保证光伏阵列稳定准确的运行在最大功率点,而且跟踪速度明显提高,对于提高整个太阳能光伏发电系统的效率有非常重要的意义。   【关键词】光伏发电;最大功率点跟踪;预测模型;扰动控制   【Abstract】This paper analyzes the basic working principle of MPPT of photovoltaic power generation system, and designs the MPPT method based on predictive model and perturbation method. The simulation results show that the MPPT method based on prediction model and perturbation and observation methodc can not only ensure the stability and accuracy of PV array, but also improve the efficiency of the whole system.   【Key words】Photovoltaic power generation; MPPT; Forecasting model; Disturbance control   0 引言   光伏能源是可再生能源的一种,也是目前开发利用较多的一种可再生能源。光伏能源属于清洁能源,其具有无污染、可再生、分布广泛等特点,近年来被广泛认可并使用,就我们国家的情况而言,无论从现实需要,还是从未来的发展潜力考虑,太阳能都应是各种可再生能源中的首选。   1 传统的最大功率跟踪方法   1.1 恒定电压法   恒定电压法在太阳能电池温度变化不大时,太阳能电池的输出P―V 曲线上的最大功率点几乎分布于一条垂直直线的两侧。恒定电压法特点是:检测参数少、对硬件电路的要求低、实现比较容易,但是跟踪控制的效率差、仅适用于小功率发电设备中。   1.2 扰动观察法   扰动观察法[1]是通过对系统的输出电压、电流或PWM信号上叠加一个或正或负的扰动,在跟踪控制过程中,通过不间断地比较系统的输出功率值来判断所受的扰动是增强型的还是削弱型的,进而对控制PWM脉冲信号进行调节,实现最大功率跟踪控制。扰动观察法的特点是:实现起来比较容易,但是在最大功率点附近的波动现象会影响系统的输出。   1.3 电导增量法   电导增量法是根据光伏电池的输出特性中电压和功率的关系实现控制的。电导增量法的特点:实现起来比较容易,而且与扰动观察法相比,在最大功率点附近没有较大的波动现象,但在实践中对硬件的要求较高,最大功率跟踪控制调节的周期也会增加,影响了控制的时实性。   2 基于预测模型加扰动控制的最大功率点跟踪方法   目前对太阳能光伏MPPT的研究主要是解决其中的两个问题[2],一是跟踪速度,二是系统的稳态性。基于以上两个问题,本文提出了基于预测模型加扰动控制的最大功率点跟踪方法。本方法相当于在原有太阳能光伏发电系统的MPPT控制器上添加一个调节器,改进后的MPPT控制器主要分为两部分,预测模型控制器是为了快速准确地找到最大功率点位置,扰动控制器是为了避免预测模型误差,使跟踪结果更精确。本项目提出的基于预测模型加扰动控制的最大功率点跟踪方法原理图如图1所示。   2.1 极限学习机理论   本项目?用近年来发展起来的智能算法―神经网络极限学习机来训练预测模型控制器,极限学习机(ELM)是一种误差比较小的单隐层前馈神经网络训练算法,跟传统的基于梯度下降的学习算法相比极限学习机有很大的优势:ELM的计算速度非常快,他随机给定隐含层的连接权值,训练过程不需要迭代调整;传统的梯度下降算法,容易陷入局部极小,而ELM算法由于其求解输出权值最小二乘解的过程是一个凸优化问题,因此不会陷入局部最优,具有比传统算法更好的泛化性;ELM的参数选择简单,只需要选择合适的隐层结点便可获得良好的性能,而传统的基于梯度下降的算法如网络等,还需要选择合适的学习率,训练?i长等。   2.2 预测模型控制器的训练   本文设计的MPPT控制器中的模型控制器是为了快速准确的找到光伏阵列的最大功率点,因此把最大功率点作为预测模型控制器模型的输出,由于在环境温度和光照强度一定时,最大功率点的功率和电压是确定的

文档评论(0)

yingzhiguo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5243141323000000

1亿VIP精品文档

相关文档