- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于组合优化理论的无线网络流量建模与预测.doc
基于组合优化理论的无线网络流量建模与预测
摘 要: 无线网络流量受到上网成本、上网行为等因素的综合作用,具有随机性和周期性变化的特点,针对单一模型不能全面描述该变化特点的难题,提出基于组合优化理论的无线网络流量预测模型。首先采用自回归积分滑动平均模型进行建模,找出无线网络流量的周期性变化规律,然后采用相关向量机进行建模,找出无线网络流量的随机性变化特点,最后将它们的预测结果组合在一起进行单步和多步的无线网络流量预测实验。实验结果表明,该模型可以同时对随机性和周期性变化特点进行描述,预测精度高于单一自回归积分滑动平均模型或者相关向量机。
关键词: 无线网络; 自回归积分滑动平均模型; 建模与预测; 组合优化理论
中图分类号: TN92?34; TP391 文献标识码: A 文章编号: 1004?373X(2016)23?0043?04
Modeling and forecast of wireless network traffic
based on combinatorial optimization theory
CHEN Huafeng1, 2, LIU Jianing3
(1. School of Information Science and Technology, Hainan Normal University, Haikou 571158, China;
2. College of Qionghai Distance Education, Hainan Open University, Qionghai 571400, China;
3. Information Network and Data Center, Hainan Normal University, Haikou 571100, China)
Abstract: Since the wireless network traffic is synthetically affected by the factors of online cost and online behavior, it has the characteristics of randomness and periodic variation. To solve the difficulty that the single model can′t describe the change characteristic comprehensively, a wireless network traffic prediction model based on combinatorial optimization theory is put forward. The autoregressive integral moving average model is used to build the proposed model to find out the periodic variation rule of the wireless network traffic, the relevance vector machine is used to establish the model to find out the random variation characteristics of the wireless network traffic, and then the two prediction results are combined to realize the single step and multi?step wireless network traffic prediction experiments. The results show that the proposed model can describe the characteristics of randomness and periodic variation, and its prediction accuracy is higher than that of the single autoregressive integral moving average model or correlation vector machine.
Keywords: wireless network; autoregressive integral moving average model; modeling and prediction; combina
文档评论(0)