基于小波神经网络的网络流量预测研究.docVIP

基于小波神经网络的网络流量预测研究.doc

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于小波神经网络的网络流量预测研究.doc

基于小波神经网络的网络流量预测研究   摘 要: 主要采用小波神经网络的相关理论和方法对某小区网络的访问流量情况进行建模和预测。利用收集到的网络流量变化情况作为小波网络的训练样本,成功实现了该网络的流量预测。试验仿真结果表明,构建的小波神经网络模型可以很好地实现对网络流量的高精度预测。   关键词: 小波神经网络; 网络流量; 预测研究; 训练样本   中图分类号: TN711?34 文献标识码: A 文章编号: 1004?373X(2016)23?0098?02   Research on network traffic prediction based on wavelet neural network   LI Xin, SUN Shanshan   (College of Information Engineering, Suihua University, Suihua 152000, China)   Abstract: The relevant theory and method of wavelet neural network are used to establish and predict the network traffic situation of a certain uptown. The acquired network traffic change situation is used as the training sample of the wavelet network to realize the traffic prediction of the network. The simulation results show that the constructed wavelet neural network model has high precision to predict the network traffic.   Keywords: wavelet neural network; network traffic; prediction research; training sample   0 引 言   随着互联网规模的不断增大以及各种网络“新应用”、“新服务”的不断涌现,网络信息变得越来越庞大和多变,对网络访问流量进行精确地预测从而实现对网络运行状态的有效管理,已经逐步成为目前的一个研究热点。网络流量预测是实现网络控制、网络规划,保证网络安全以及提高网络服务质量的重要前提。   网络流量具有自相似性、长相关性和多重分形性等复杂性质,对其进行精确地预测一直以来都是一个难点。目前,常见的网络流量预测方法主要有自回归分析法、马尔科夫分析法、分形布朗运动分析法和神经网络分析法。与前面三种传统方法相比,利用神经网络对网络流量进行预测具有预测精度高、方法简单、泛化性强和稳定性好的特点,正在逐步成为网络流量预测研究中的主流方法。   文献[1]根据网络流量的变化特征,基于BP神经网络提出了一个P2P网络流量预测模型,实现了网络流量的较高精度预测。文献[2]结合小波变换和人工神经网络的优势,建立一种网络流量预测的小波神经网络模型,通过将流量时间序列进行小波分解,获得了网络的训练和验证样本,试验表明采用这种方法进行流量预测,要比直接采用神经网络对样本进行预测的精度高。文献[3]根据网络流量自身的特征,研究了BP神经网络和小波神经网络在校园流量预测中的应用,其所建立的模型,经仿真验证证明,可以较好地预测学校网络的流量变化情况,可以为校园网络的规划和管理提供一定参考。   小波神经网络是一种以BP神经网络拓扑结构为基础,把小波基函数作为隐含节点的传递函数,其拓扑结构如图1所示。它类似于BP神经网络权值修正算法,采用梯度修正法修正网络的权值和小波基函数参数,从而使小波神经网络预测输出不断逼近期望输出[4?5]。   采用小波神经网络进行网络流量预测的基本流程如图2所示。   1 网络流量预测   1.1 试验数据来源   采用网络流量监测软件对某小区的网络流量进行实时采集,得到了该小区5天内的网络流量数据,每隔15 min记录一次该时间段内的网络流量值,一共获得了480个时间点的数据。用4天共384个网络流量的数据训练小波网络,最后用训练好的小波神经网络预测第5天的网络流量。为了避免局部数值偏移造成的误差,本文采用编组的方式提高模型预测精度,用前三个时间点的网络流量来综合预测后一个时间点的网络流量情况[6?7]。      图1 小波神经网络的拓扑结构      图2 小波神经网络进行预测的流程图   1.2 构建小波神经网络模型   本文采用

文档评论(0)

yingzhiguo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5243141323000000

1亿VIP精品文档

相关文档