- 1、本文档共4页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于小波变换的多模态医学图像的融合方法.doc
基于小波变换的多模态医学图像的融合方法
摘 要: 针对单一模态的图像不能提供足够的信息,可以将互补的图像进行融合。提出一种基于小波变换的医学图像融合方法。首先对待融合的医学图像进行小波变换,分别得到低频和高频分量。对于低频分量,采用基于局部区域能量的方法进行融合;对于高频分量,采用基于局部区域系数之差的加权和方法进行融合;最后通过小波逆变换得到融合图像。实验结果表明,相比同类研究方法,该算法在保证图像质量的同时可增强图像的空间细节表现能力。
关键词: 图像融合; 医学图像; DWT; 区域能量; 相邻系数
中图分类号: TN911.73?34; TP391 文献标识码: A 文章编号: 1004?373X(2016)24?0096?04
Multimodal medical image fusion method based on discrete wavelet transform
ZHAN Lingchao, MIN Fang, GUO Huimin
(Department of Information Engineering, Nanhang Jincheng College, Nanjing 211156, China)
Abstract: Since the single modal image can′t provide enough information, it is necessary to fuse the complementary images. A medical image fusion method based on discrete wavelet transform (DWT) is proposed. DWT is performed for the multimodal medical images under fusion to obtain the low?frequency and high?frequency components respectively. A method based on the local regional energy is adopted to fuse low?frequency components. The weighted sum method based on difference of the local regions coefficients is used to fuse the high?frequency components. The fusion image is obtained by means of the inverse DWT. The experimental results prove that, in comparison with the similar research methods, the method can enhance the spatial detail expressive ability of the image while ensuring the image quality.
Keywords: image fusion; medical image; DWT; regional energy; adjacent coefficient
0 引 言
随着医学影像工程和计算机技术的不断发展,出现了很多成像设备,这样就有多模态的医学图像,这些图像对人体脏器和病变组织的分析有不同的作用,比如CT图像有较强的空间分辨率和几何特性,对骨骼成像非常清晰,但对软组织的对比度则较低;MR图像可清晰反映软组织等解剖结构,但对钙化点不敏感,并且受到磁干扰会发生几何失真。这样可以看出对于人体同一解剖结构所得到的不同图像,在形态和功能信息上是互补的。单一模态的图像往往不能提供足够的信息,可以将互补的图像进行融合。
图像融合技术[1?5]就是将来自多个传感器的多幅源图像融合成一幅新的图像,这幅融合图像具有更多的信息和更高的可信度。图像融合技术应用在很多领域,医学图像融合就是其中的一个。图像融合可以分为像素级融合、特征级融合和决策级融合。目前的融合方法大多为像素级融合,常用的有PCA[6]、金字塔变换[7]、小波变换[8?11]等融合方法。其中PCA是一种选取最优像素权值的方法,缺点是无法突出光谱特性,不适用于相关性弱的图像融合。金字塔变换的缺点是层间具有相关性,导致融合结果不够理想。
小波变换对保留图像信息具有相当好的性能,通过不同的融合规则可以得到不同的结果。本文提出了一种基于小波变换的医学图像的融合方法。先将待融合的两幅图像进行
文档评论(0)