- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于个性化的协同过滤图书推荐算法研究.doc
基于个性化的协同过滤图书推荐算法研究
摘要:近年来,随着国家对教育的重视,图书馆图书呈线性增长,借阅者很难从海量的图书资源中选取有用的信息。基于个性化的协同过滤推荐算法有效地解决了这个问题,为了提高推荐的准确度,引入相似度影响因子,充分考虑不同因素对推荐结果影响力的大小。
关键词:推荐系统;系统过滤;用户相似性;影响因子
中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2016)28-0088-02
1 背景
协同过滤算法给我们的生活带来了极大的便利,特别是当我们在网上购物时,网站总是能推送我们需要的商品,简化了购物过程,方便了我们的生活。协同过滤算法可以根据用户偏好和其他特征为用户推荐相似物品,面对海量的图书馆图书资源,如果可以将协同推荐算法用于图书馆图书推荐,将能极大地方便学生的学习生活。
2 相关工作
以前图书馆推荐算法直接依据图书评分数据,按评分高低向用户进行推荐,没有考虑到用户的偏好和需求。随着技术的发展,图书推荐算法也得到了改进,目前常用的图书馆推荐算法大致分为三种:
1)基于内容的推荐算法:该算法的基本思想是根据用户的借阅历史记录,分析借阅书籍,提取用户标签数据,然后将用户标签和图书标签进行匹配,观察匹配程度,选取前N本图书,生成图书推荐列表。
2)协同过滤推荐算法:该算法在基于内容的推荐算法上进一步改进,加入相似度概念,考虑有着相似兴趣爱好的读者对用户的影响。我们需要计算用户相似度,找到与该用户最相似的top-N用户,然后分析用户对这些相似用户已借阅读书的感兴趣程度,得到图书推荐列表。目前有三种常用方法用于计算用户之间的关联度。
欧几里得距离法:将用户对读书的评分转换成向量的形式,由此我们得到一个n维的评分向量,利用欧几里得公式计算两个向量之间的距离,距离值越小相似度越高,欧氏公式为:
余弦相似性:将用户评分看成一个n维的向量,利用余弦公式计算两个用户向量夹角余弦值,值越大两个用户就越相似,余弦公式为:
相关相似性:利用Pearson相关系数计算两个读者之间的相似程度。
3)基于用户个性化协同过滤推荐算法:根据高校的实际情况和需求,应运而生了一种基于用户背景的个性化推荐方法。一般情况下,用户多会借阅本专业的相关书籍,所以在进行推荐的过程中可以重点考虑相关专业同学的借阅记录,将他们借阅过的书籍进行重点推荐。
3 基于个性化的协同过滤推荐算法
3.1 图书初始评分
每天图书馆会有大量的新书上线,这些新书由于之前没有人借阅,需要为这些图书人为的划分类别和设置评分初值,根据《中图法》可以将图书划分成不同的22个大类。
3.2 计算用户对每一类别图书的偏好
根据用户的借阅历史和历史评分,结合之前的图书分类数据,计算用户对一类书籍的总评分。用户借阅不同类别书籍的数量不同,可以反映用户对某类书籍的喜爱程度,为此我们为用户已评价类别赋予不同的权重值:。为某类别图书借阅统计次数,为所有借阅图书的总次数。由此我们可以计算出用户对该类图书的评分,评分公式为:
表示读者a对类别书籍的评分,i属于类别的图书,是用户对类别图书的总评分。
3.3 根据用户偏好,计算用户相似度
上一步我们得到了用户对图书类别的评分,根据这个评分,使用皮尔逊相关系数算法计算用户之间的相似度,找出用户的近邻集合U。皮尔逊相关性公式为:
M为用户a和b的共同评分项,和分别为用户a和用户b的平均评分,利用图书类别计算用户间的相似度可以大大减少计算量。根据上式我们得到用户之间的相似度,依据相似度大小进行排序,选取前N个用户作为用户a的邻居集合U。
3.4 预测用户对其他书籍的评分产生推荐
我们根据用户的近邻集U可以产生图书推荐列表,为了使推荐列表更准确,我们引入读者相似度的影响因子。考虑到实际情况,影响因子的主要有用户专业、职位和以往评分准确度这三个方面。
1)专业:
众所周知,相同专业的学生对书的需求是相似的,所有相同专业学生的借阅书籍对推荐影响较大(),影响因子表达式如下:
2)职位
学校内老师、研究生和大学生是借书的主力军。不同职位的人对图书好坏的判读力是不同的,因此老师对图书推荐的推荐影响力应该最大。下表中的,,呈现逐渐递减关系:
3)历史评分准确度
不同用户有不同的评分习惯,对图书评分的标准不同,为了确保推荐的准确度,我们引入第三个影响因子。如果用户评分越接近平均分则用户评分越准确,影响因子也就越大,影响因子计算公式为:
其中S为用户评分图书集,为用户对图书i的评分,为图书的平均评分,max和min分别为图书i获得评分的最大值和最小值。
综
您可能关注的文档
最近下载
- 全套IECQQC080000-2017有害物质过程管理体系文件(HSPM).pdf VIP
- 中国东方资产管理股份有限公司招聘笔试题库2025.pdf
- 市场调查与分析: 数据分析网络调查报告撰写 (慕课版)王晓燕习题答案.docx
- 起重装卸机械操作工高级工培训大纲与教学内容概述.docx VIP
- 2025至2030中国中药饮片行业市场发展现状及竞争格局与投资发展报告.docx
- 2025年教科版六年级上册科学第一单元综合检测试卷及答案.pptx VIP
- 《企业质量管控与应用》课件.ppt VIP
- 吊顶施工合同范本.pdf VIP
- 公共建筑室内温度控制管理办法——空调系统节能运行管理制度.doc VIP
- 统编版八年级语文上册课件《诗词五首-渔家傲》.pptx VIP
文档评论(0)