- 1、本文档共55页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
wexInformedSearchandExploration
Informed Search and Exploration Chapter 4 (4.1-4.3) Introduction Ch.3 searches – good building blocks for learning about search But vastly inefficient eg: Can we do better? (Quick Partial) Review Previous algorithms differed in how to select next node for expansion eg: Breadth First Fringe nodes sorted old - new Depth First Fringe nodes sorted new - old Uniform cost Fringe nodes sorted by path cost: small - big Used little (no) “external” domain knowledge Overview Heuristic Search Best-First Search Approach Greedy A* Heuristic Functions Local Search and Optimization Hill-climbing Simulated Annealing Local Beam Genetic Algorithms Informed Searching An informed search strategy uses knowledge beyond the definition of the problem The knowledge is embodied in an evaluation function f(n) Best-First Search An algorithm in which a node is selected for expansion based on an evaluation function f(n) Fringe nodes ordered by f(n) Traditionally the node with the lowest evaluation function is selected Not an accurate name…expanding the best node first would be a straight march to the goal. Choose the node that appears to be the best Best-First Search Remember: Uniform cost search F(n) = g(n) Best-first search: F(n) = h(n) Later, a-star search: F(n) = g(n) + h(n) Best-First Search (cont.) Some BFS algorithms also include the notion of a heuristic function h(n) h(n) = estimated cost of the cheapest path from node n to a goal node Best way to include informed knowledge into a search Examples: How far is it from point A to point B How much time will it take to complete the rest of the task at current node to finish Greedy Best-First Search Expands node estimated to be closest to the goal f(n) = h(n) Consider the route finding problem. Can we use additional information to avoid costly paths that lead nowhere? Consider using the straight line distance (SLD) Route Finding Route Finding: Greedy Best First Route Finding: Greedy Best First Route Finding: Greedy Best First Route Findi
您可能关注的文档
- UML时序图用法说明.ppt
- uml第六课.ppt
- uml第五课.ppt
- uml第四课+.ppt
- uml第三课.ppt
- uml第二课.ppt
- UML统一建模语言.ppt
- UnderstandingFragmentsandRunons.ppt
- uml第四课.ppt
- undertaking.ppt
- 2024年燃气职业技能鉴定高频难、易错点题【名师推荐】附答案详解.docx
- 2024年燃气职业技能鉴定高频难、易错点题含完整答案详解【全优】.docx
- 2024年燃气职业技能鉴定高频难、易错点题附答案详解【实用】.docx
- 2024年燃气职业技能鉴定高频难、易错点题【实用】附答案详解.docx
- 2024年电梯考试全真模拟模拟题含答案详解(A卷).docx
- 2024年燃气职业技能鉴定高分题库(预热题)附答案详解.docx
- 生物医药与高端医疗器械生产线建设项目资金申请报告(范文参考).docx
- 2024年燃气职业技能鉴定高分题库(网校专用)附答案详解.docx
- 2024年燃气职业技能鉴定高频难、易错点题及参考答案详解【考试直接用】.docx
- 2024年郴州市宜章县城区学校教师选聘真题.docx
文档评论(0)