- 1、本文档共83页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
DataminingConceptsandteniques9
* * * MK: Do we need this slide here?? We don’t give references for other topics until the reference section * * * Explore the bound in mining * One fig * * * * * * * * * * * * * * * MK: Note – different notation than used in book. Will have to standardize notation. * * * * * * * MK: Do we want to keep this slide? It is not in the text and may confuse the students. * * * * * * * * * * * * * * * * * * * * * * Transfer Learning: Conceptual Framework Transfer learning: Extract knowledge from one or more source tasks and apply the knowledge to a target task Traditional learning: Build a new classifier for each new task Transfer learning: Build new classifier by applying existing knowledge learned from source tasks * Traditional Learning Framework Transfer Learning Framework Transfer Learning: Methods and Applications Applications: Especially useful when data is outdated or distribution changes, e.g., Web document classification, e-mail spam filtering Instance-based transfer learning: Reweight some of the data from source tasks and use it to learn the target task TrAdaBoost (Transfer AdaBoost) Assume source and target data each described by the same set of attributes (features) class labels, but rather diff. distributions Require only labeling a small amount of target data Use source data in training: When a source tuple is misclassified, reduce the weight of such tupels so that they will have less effect on the subsequent classifier Research issues Negative transfer: When it performs worse than no transfer at all Heterogeneous transfer learning: Transfer knowledge from different feature space or multiple source domains Large-scale transfer learning * * Chapter 9. Classification: Advanced Methods Bayesian Belief Networks Classification by Backpropagation Support Vector Machines Classification by Using Frequent Patterns Lazy Learners (or Learning from Your Neighbors) Other Classification Methods Additional Topics Regarding Classification Summary * Summary Effective a
文档评论(0)