- 1、本文档共70页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
DataminingConceptsandteniques6
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Ref: Basic Concepts of Frequent Pattern Mining (Association Rules) R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD93. (Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD98. (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. ICDT99. (Sequential pattern) R. Agrawal and R. Srikant. Mining sequential patterns. ICDE95 * Ref: Apriori and Its Improvements R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB94. H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD94. A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB95. J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD95. H. Toivonen. Sampling large databases for association rules. VLDB96. S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD97. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD98. * Ref: Depth-First, Projection-Based FP Mining R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of frequent itemsets. J. Parallel and Distributed Computing:02. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD’ 00. J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic Projection. KDD02. J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K Frequent Closed Patterns without Minimum Support. ICDM02. J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for Mining Frequent
您可能关注的文档
- Authorware课件制作实例教程第章课件中的动画效果.ppt
- ATTIRE英国婚纱礼服杂志年月号完整版杂志doc.ppt
- Australia澳大利亚风土人情英文版.ppt
- AutoCAD使用教程.ppt
- AutoCAD第三讲编辑命令.ppt
- AutoCAD实用教程免费下载.ppt
- AutoCAD机械绘图技巧完整版工科同学必备.ppt
- AXD调试工具的使用详解.ppt
- AutoCAD建筑绘图精解.ppt
- AutoCAD第四讲编辑命令.ppt
- 2023-2024学年初中语文部编版八年级下第六单元单元测试(含答案解析完整版722755500.pdf
- 2024年竞选班干部演讲稿(真题15篇)_26 .pdf
- 2024年预防近视工作实施方案(2篇) .pdf
- 通用汇报总结陈述述职商务ppt模板 现代城市企业风格66.pptx
- 考研题库 《新编英汉翻译教程》(第2版)(含真题).docx
- 2025届江苏省赣榆县赣榆智贤中学高考考前提分化学仿真卷含解析.doc
- 2025届海南省重点中学高考适应性考试历史试卷含解析.doc
- 河南省平顶山市,许昌市,汝州市2025届高考冲刺历史模拟试题含解析.doc
- 2025届河北省鸡泽县第一中学高三一诊考试历史试卷含解析.doc
- 江西省临川市第一中学2025届高三冲刺模拟历史试卷含解析.doc
文档评论(0)