- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
金属材料力学性能
一.名词解释
1,E,弹性模量,表征材料对弹性变形的抗力,
2,δs:呈现屈服现象的金属拉伸时,试样在外力不增加仍能继续伸长的应力,表征材料对微量塑性变形的抗力。
3,σbb:是灰铸铁的重要力学性能指标,是灰铸铁试样弯曲至断裂前达到的最大弯曲里
(按弹性弯曲应力公式计算的最大弯曲应力)
4δ:延伸率,反应材料均匀变形的能力。
5,韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力(或指材料抵抗裂纹扩展能力)
6低温脆性:某些金属及中低强度钢,在实验的温度低于某一温度Tk时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔集聚型变为穿晶解理型,断口特征由纤维状态变为结晶状,这就是低温脆性
7 Kic:断裂韧度,为平面应变的断裂韧度,表示在平面应变条件下材料抵抗裂变失稳扩展的能力
8 弹性比功(弹性比能):表示单位体积金属材料吸收变形功的能力
9σ-1:疲劳极限,表明试样经无限次应力循环也不发生疲劳断裂所对应的能力
10循环韧性(消振性):表示材料吸收不可逆变形功的能力(塑性加载)
11Ψ:断面收缩率,缩经处横截面积的最大缩减量与原始横截面积的百分比,
12Ak:冲击功、,冲击试样消耗的总能量或试样断裂过程中吸收的总能量
13蠕变:材料在长时间的恒温应力作用下,(即使应力低于屈服强度)也会缓慢地产生塑性变形的现象。
14σtて:在规定温度(t)下,达到规定的持续时间(て)而不发生断裂的最大应力。
15:氢致延滞断裂:由于氢的作用而产生的延滞断裂现象。
17.δ0.2:屈服强度
18.△Kth:疲劳裂纹扩展门槛值,表征阻止裂纹开始扩展的能力
19δbc:抗拉强度,式样压至破坏过程中的最大应力。
20.包申效应:金属材料经过预加载产生少量塑变,卸载后再同向加载,规定残余伸长应力增加,反向加载,规定残余应力减低的现象,称为包申效应。
21.NSR:缺口敏感度,缺口试样的抗拉强度δbn与等截面尺寸光滑试样的抗拉强度δb之比。
22.力学行为:材料在外加载荷,环境条件及综合作用下所表现出的行为特征。
23.强度
24:应力腐蚀:金属在拉应力和特定化学介质共同作用下,进过一段时间后所产生的应力脆断现象。
25.滞弹性:(弹性后效)在弹性范围内快速加载或卸载后,随时间延长而产生附加弹性应变的现象。
二、填空题17、断裂可以分为(裂纹形成)与(扩展)两个阶段。静拉伸断裂宏观断口分为(纤维区)、(放射区)、(剪切唇)三个区域。该断口微观特征:(纤维状)对于脆性穿晶断裂断口主要特征:(放射状)和(结晶状)
18、典型疲劳断裂的宏观断口分为三个区(疲劳源)(疲劳区)(瞬间区)疲劳断口宏观特征(贝纹线、海滩花样)、微观特征(疲劳条带)19、应力腐蚀微观断口可以看到呈(枯树枝状)的微观裂纹,呈(泥状花样)的腐蚀产物和(腐蚀抗)
20 微孔聚集型断裂的微观特征(韧窝),解理断裂的微观特征主要有(解理台阶)和(河流花样),沿晶断裂的微观特征 (冰糖状) 断口和 (晶粒状)断口。
21 应力状态系数值越大,表示应力状态越(软),材料越容易产生(塑性)变形和(韧性)断裂。为测量脆性材料的塑性,常选用应力状态系数值(较大)的试验方法。
22 在扭转实验中,塑性材料的断裂面与式样轴线(垂直),脆性材料的断裂面与式样轴线(成45°角)。
23 接触疲劳和应力水平,疲劳可分为(高周疲劳)和(低周疲劳),疲劳断裂的典型宏观特征是(贝纹线),微观特征是(疲劳条带)。
24 在缺口式样冲击试验中,缺口式样的厚度越大式样的冲击韧性越(小)韧脆转变温度越(高)。
三 问答题
1.温度对塑形、强度的影响(趁热打铁的科学道理):1)当温度升高,没有相变发生时,材料结构不发生改变,因此派纳力不会变化,一方面温度升高,原子运动能力增加,热运动加剧,另一方面若温度高于再结晶温度,会发生软化,显示不出加工硬化。因此,材料的塑形就会升高,强度降低。2)当温度升高,有相变发生时,材料结构发生了改变,派纳力改变,与此同时,α+Fe3C→δ,使间隔半径增大,原子间作用力减弱,且第二相强化消失,使材料强度降低,塑形升高。
2.低碳钢强化机理:1)低碳钢适温下相组成物为α+Fe3C,淬火后变为M,而M为过饱和固溶体,C原子溶入M间隙中心,会产生畸变偶极应力场,与位错产生交互作用,从而产生固溶强化效应。2)低碳M压结构为位错,因此会产生位错塞积现象,从而产生强化效应,低碳M又叫板条M,板条之间晶界相互作用,也会产生强化作用。3)由于MS点在260℃左右,会发生自回火现象,提高钢的强度和塑形,保持优良的综合力学性能。
4 有一弹簧产生塑性变形导致其不能正常工作,试分析是什么力学性能不足导致及改变措施?
答:产生塑性变形,表面弹簧对塑性变形的抗力不足,即弹性极限过低所
文档评论(0)