- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
霍夫曼编码
重庆交通大学信息科学与工程学院
综合性设计性实验报告
专 业 班 级: 通信工程2012级2班
学 号: 631206040217
姓 名: 雷勇
实验所属课程: 信息论与编码
实验室 (中心): 软件与通信实验中心
指 导 教 师 : 黄大荣
2015年4月
教师评阅意见:
签名: 年 月 日 实验成绩: 霍夫曼编码的matlab实现
一、实验目的和要求
1回顾霍夫曼编码的原理。
2用Matlab语言编程实现霍夫曼(Huffman)编码。
二、实验原理
1 霍夫曼编码介绍
霍夫曼编码(Huffman Coding)是一种熵编码编码压缩方式,霍夫曼编码是可变字长编码(VLC)的一种。霍夫曼压缩是个无损的压缩算法,一般用来压缩文本和程序文件。哈夫曼压缩属于可变代码长度算法一族。意思是不同符号(例如,文本文件中的字符)用一个特定长度的位序列替代。因此,在文件中出现频率高的符号,使用短的位序列,而那些很少出现的符号,则用较长的位序列。
霍夫曼编码的码长是变化的,对于出现频率高的信息,编码的长度较短;而对于出现频率低的信息,编码长度较长。这样,处理全部信息的总码长一定小于实际信息的符号长度。 霍夫曼编码是一种根据字母的使用频率而设计的变长码,能提高信息的传输效率,至今仍有广泛的应用。霍夫曼编码方法的具体过程是:首先把信源的各个输出符号序列按概率递降的顺序排列起来,求其中概率最小的两个序列的概率之和,并把这个概率之和看做是一个符号序列的概率,再与其他序列依概率递降顺序排列(参与求概率之和的这两个序列不再出现在新的排列之中)。然后,对参与概率求和的两个符号序列分别赋予二进制数字0和1。继续这样的操作,直到剩下一个以1为概率的符号序列。最后,按照与编码过程相反的顺序读出各个符号序列所对应的二进制数字组,就可分别得到各该符号序列的码字
霍夫曼编码(Huffman Coding)是一种编码方式,是一种用于无损数据压缩的熵编码(权编码)算法。1952年,David A. Huffman在麻省理工攻读博士时所发明的,并发表于《一种构建极小多余编码的方法》(A Method for the Construction of Minimum-Redundancy Codes)一文。
在计算机数据处理中,霍夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码,其中变长编码表是通过一种评估来源符号出现机率的方法得到的,出现机率高的字母使用较短的编码,反之出现机率低的则使用较长的编码,这便使编码之后的字符串的平均长度、期望值降低,从而达到无损压缩数据的目的。1951年,霍夫曼和他在MIT信息论的同学需要选择是完成学期报告还是期末考试。导师Robert M. Fano给他们的学期报告的题目是,查找最有效的二进制编码。由于无法证明哪个已有编码是最有效的,霍夫曼放弃对已有编码的研究,转向新的探索,最终发现了基于有序频率二叉树编码的想法,并很快证明了这个方法是最有效的。
由于这个算法,学生终于青出于蓝,超过了他那曾经和信息论创立者克劳德·香农共同研究过类似编码的导师。霍夫曼使用自底向上的方法构建二叉树,避免了次优算法Shannon-Fano编码的最大弊端──自顶向下构建树。
2 霍夫曼编码原理
霍夫曼(Huffman)编码算法是满足前缀条件的平均二进制码长最短的编-源输出符号,而将较短的编码码字分配给较大概率的信源输出。算法是:在信源符号集合中,首先将两个最小概率的信源输出合并为新的输出,其概率是两个相应输出符号概率之和。这一过程重复下去,直到只剩下一个合并输出为止,这个最后的合并输出符号的概率为1。这样就得到了一张树图,从树根开始,将编码符号1 和0 分配在同一节点的任意两分支上,这一分配过程重复直到树叶。从树根到树叶途经支路上的编码最后就构成了一组异前置码,就是霍夫曼编码输出。
离散无记忆信源。例如:
U u1 u2 u3 u4 u5
P(U) = 0.4 0.2 0.2 0.1 0.1
码字Wi 信符si 概率
P(si) 编码过程 第一次 第二次 第三次 W1=0
W2=10
W3=111
W4=1101
W5=1100 S1
S2
S3
S4
S5 0.4
0.2
0.2
0.1
0.1 0.4
0.2
0.2
1
您可能关注的文档
最近下载
- 印刷服务技术方案、实施方案、应急方案、售后服务方案.doc
- 高一数学三角函数练习题.pdf VIP
- 2024年甘肃省统一高考英语试卷(新高考Ⅱ).pdf VIP
- 中银国际证券有限责任公司信息技术专员岗位笔试选择题附笔试高分技巧.docx VIP
- QC∕T 1037-2016 道路车辆用高压电缆.pdf VIP
- 消防施工 新科技 新技术 新工艺 新材料的应用.doc VIP
- 2024—2025学年北京市人大附中高三上学期暑假返校开学考试物理试卷.doc VIP
- 科技馆事业面临的问题及应对方案.pdf VIP
- 2025“才聚齐鲁成就未来”山东黄金集团井下技能工人招聘2000人笔试备考试题及答案解析.docx VIP
- 梅赛德斯-奔驰-R级-产品使用说明书-R350 4MATIC-251165-Rclass.pdf VIP
文档评论(0)