大数据ppt要点.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
大数据ppt要点

小组成员: 朱轶晨 潘志杰 李想 王丽梅 * 国内大数据 马云对未来的预测,是建立在对用户行文分析的基础上。“2008年初,阿里巴巴平台上整个买家询盘数急剧下滑,欧美对中国采购在下滑。海关是卖了货,出去以后再获得数据;而我们提前半年时间从询盘上推断出世界贸易发生变化了。” 腾讯在天津投资建立亚洲最大的数据中心;百度也在投资建立大数据处理中心; * 2012年3月,美国奥巴马政府宣布投资2亿美元启动“大数据研发计划”,旨在提高和改进从海量和复杂数据中获取知识的能力,加速美国在科学和工程领域发明的步伐,增强国家安全。 这是继1993年美国宣布“信息高速公路”计划后的又一次重大科技发展部署,由美国国家科学基金会、能源部等6个联邦部门共同投资。 美国的大数据战略 * 大数据的定义 理解大数据 相关技术与应用 目录 * facebook 社交网络 … 淘宝、ebuy 电子商务 … 微博、Apps 移动互联 … 21世纪是数据信息大发展的时代,移动互联、社交网络、电子商务等极大拓展了互联网的边界和应用范围,各种数据正在迅速膨胀并变大。 互联网(社交、有哪些信誉好的足球投注网站、电商)、移动互联网(微博)、物联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。 “大数据”的诞生: 半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到了一个开始引发变革的程度。它不仅使世界充斥着比以往更多的信息,而且其增长速度也在加快。信息爆炸的学科如天文学和基因学,创造出了“大数据”这个概念*。如今,这个概念几乎应用到了所有人类智力与发展的领域中。 大数据时代的背景 * GB TB PB EB ZB 想驾驭这庞大的数据,我们必须了解大数据的特征。 地球上至今总共的数据量: 在2006 年,个人用户才刚刚迈进TB时代,全球一共新产生了约180EB的数据; 在2011 年,这个数字达到了1.8ZB。 而有市场研究机构预测: 到2020 年,整个世界的数据总量将会增长44 倍,达到35.2ZB(1ZB=10 亿TB)! 1PB = 2^50字节 1EB = 2^60字节 1ZB = 2^70字节 数据大爆炸 * 大数据的4V特征 体量Volume 多样性Variety 价值密度Value 速度Velocity 非结构化数据的超大规模和增长 总数据量的80~90% 比结构化数据增长快10倍到50倍 是传统数据仓库的10倍到50倍 大数据的异构和多样性 很多不同形式(文本、图像、视频、机器数据) 无模式或者模式不明显 不连贯的语法或句义 大量的不相关信息 对未来趋势与模式的可预测分析 深度复杂分析(机器学习、人工智能Vs传统商务智能(咨询、报告等) 实时分析而非批量式分析 数据输入、处理与丢弃 立竿见影而非事后见效 * 大数据的定义 理解大数据 相关技术与应用 目录 * 1、密不可分的大数据与云计算 商业模式驱动 应用需求驱动 云计算本身也是大数据的一种业务模式 大数据是落地的云 云计算的模式是业务模式,本质是数据处理技术。 数据是资产,云为数据资产提供存储、访问和计算。 当前云计算更偏重海量存储和计算,以及提供的云服务,运行云应用,但是缺乏盘活数据资产的能力,挖掘价值性信息和预测性分析,为国家、企业、个人提供决策和服务,是大数据核心议题,也是云计算的最终方向。 * 2、大数据不仅仅是“大” 多大? 至少PB 级 比大更重要的是数据的复杂性,有时甚至大数据中的小数据如一条微博就具有颠覆性的价值 * 4、大数据的应用不仅仅是精准营销 通过用户行为分析实现精准营销是大数据的典型应用,但是大数据在各行各业特别是公共服务领域具有广阔的应用前景 消费行业 金融服务 食品安全 医疗卫生 军事 交通环保 电子商务 气象 * 5、管理大数据“易”理解大数据“难” 虽然大数据是一个重大问题,真正的问题是让大数据更有意义 目前大数据管理多从架构和并行等方面考虑,解决高并发数据存取的性能要求及数据存储的横向扩展,但对非结构化数据的内容理解仍缺乏实质性的突破和进展,这是实现大数据资源化、知识化、普适化的核心 非结构化海量信息的智能化处理:自然语言理解、多媒体内容理解、机器学习等 * 大数据的定义 理解大数据 相关技术与应用 目录 * 分析技术: 数据处理:自然语言处理技术 统计和分析:A/B test; top N排行榜;地域占比;文本情感分析 数据挖掘:关联规则分析;分类;聚类 模型预测:预测模型;机器学

文档评论(0)

此项为空 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档