- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Open kalmdemo.m in the Editor Run in the Command Window Kalman Filter Design This demo demonstrates MATLAB® ability to perform Kalman filtering. Both a steady state filter and a time varying filter are designed and simulated below. Problem Description Steady-State Kalman Filter Design Time-Varying Kalman Filter Design Problem Description Given the following discrete plant where A = [1.1269 -0.4940 0.1129, 1.0000 0 0, 0 1.0000 0]; B = [-0.3832 0.5919 0.5191]; C = [1 0 0]; D = 0; design a Kalman filter to estimate the output y based on the noisy measurements yv[n] = C x[n] + v[n] Steady-State Kalman Filter Design You can use the function KALMAN to design a steady-state Kalman filter. This function determines the optimal steady-state filter gain M based on the process noise covariance Q and the sensor noise covariance R. First specify the plant + noise model. CAUTION: set the sample time to -1 to mark the plant as discrete. Plant = ss(A,[B B],C,0,-1,inputname,{u w},outputname,y); Specify the process noise covariance (Q): Q = 2.3; % A number greater than zero Specify the sensor noise covariance (R): R = 1; % A number greater than zero Now design the steady-state Kalman filter with the equations Time update: x[n+1|n] = Ax[n|n-1] + Bu[n] Measurement update: x[n|n] = x[n|n-1] + M (yv[n] - Cx[n|n-1]) where M = optimal innovation gain using the KALMAN command: [kalmf,L,P,M,Z] = kalman(Plant,Q,R); The first output of the Kalman filter KALMF is the plant output estimate y_e = Cx[n|n], and the remaining outputs are the state estimates. Keep only the first output y_e: kalmf = kalmf(1,:); M, % innovation gain M = 0.5345 0.0101 -0.4776 To see how this filter works, generate some data and compare the filtered response with the true plant response: To simulate the system above, you can generate the response of each part separately or generate both together.
您可能关注的文档
最近下载
- 学堂在线 海上求生与救生 章节测试答案.docx VIP
- 智能无人船在水下地形测量中的应用.pptx VIP
- 超星尔雅2018《形象管理》章节测试答案满分答案.pdf VIP
- 学堂在线 生活英语读写 期末考试复习题答案.docx VIP
- 某沿海城市低空产业赋能城市管理可行性研究报告-简版v1.0.pdf
- 中国石油大学远程教育,压裂井返排优化设计研究.doc VIP
- 学堂在线 战场侦察监视技术与装备 章节测试答案.docx VIP
- 学堂在线 工程伦理2.0 章节测试答案.docx VIP
- 2024年四川省雅安市中考数学试卷(含答案).doc VIP
- 微电子本科毕业论文题目(热门选题100个)必威体育精装版.pdf VIP
文档评论(0)