氧化锌压敏电阻的老化机理.doc

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
氧化锌压敏电阻的老化机理

氧化锌压敏电阻的老化机理 1? 前言 从氧化锌压敏电组 U-I 特性、介电特性以及热激发电流(TSC),综述了压敏电阻直流电压和交流电压作用引起的老化现象。 氧化锌压敏电阻的老化,归因于晶粒边界区耗尽层中填隙锌离子? 的扩散,由同时施加的电压和温度引起的。当耗尽层中的填隙锌通过加热退火处理永久地扩展出来,压敏电阻的稳定性得以改善。 2? 氧化锌压敏电阻的老化现象 2.1 伏安特性曲线的老化现象 图 1 是对直径 14mm,厚度 1.8mm 的氧化锌压敏电阻的试验中得到的。图中分别列出直流和交流电压作用下伏安特性的老化现象[1-6.8]。 2.1.1 直流电压作用下的老化 在直流电压的作用下,氧化锌压敏电阻的 U-I 曲线发生不对称变化,即在施加电压一段时间后,再测量压敏电阻的 U-I 特性时,其非线性特性曲线发生不对称的变化,如图 1(a) 所示。试验时施加的电压梯度为 95V/mm,温度为 70℃。加压后在测量压敏电阻的 U-I 特性表明,在同样的电压下,流过压敏电阻的电流将增加。不对称变化表现在:和老化试验电压极性相反的伏安特性(图 1(a) 左下角)的变化比极性一致的正方向特性(图 1(a) 右上角)的变化要大。随所施加电压和加压时间的增加,U-I 特性曲线的改变程度也加大。 2.1.2 交流电压作用下的老化 当施加交流电压一定时间后,氧化锌压敏电阻的 U-I 特性曲线发生对称变化,如图 (1)b 所示。除了特性曲线的变化是对称的特点外,改变的趋势与施加直流电压的趋势相近。试验时所施加的交流电压梯度为 65V/mm,温度为 70℃。 试验还表明,不论是直流还是交流作用电压,老化试验后压敏电阻 U-I 特性在预击穿区(即低电场区域)的变化程度要比击穿区即(中电场区域)大得多。 2.2 功率损耗和阻性电流的增加 在直流电压作用下对氧化锌压敏电阻进行加速老化试验,试验结果表明,与交流电压作用下压敏电阻一样,氧化锌压敏电阻的功率损耗和阻性电流在老化试验过程中明显增加[1, 4, 5]。 2.2.1 功率损耗增加 对压敏电阻试品在加速老化后,在室温下测量其功率损耗与电压的关系曲线。图 2 表示试品在老化试验前后测试的结果。加速老化试验时的温度为 135℃,施加直流的荷电率为 0.85,试验时间为 100h。和老化试验前的功耗特性曲线相比,试验后的功耗有明显增加,即试验后功率损耗与电压的关系曲线发生了向左的移动。 2.2.2 阻性电流增加 老化试验后阻性电流增加,以及压敏电阻整体电阻率逐渐下降。 图 3 表示不同老化试验过程中交流电压和直流电压作用下,压敏电阻的电流增加的典型曲线。 图 4 表示进行老化试验前后氧化锌压敏电阻在低电场区的电阻率随温度变化的情况。从图中可以看出,老化试验后氧化锌压敏电阻的电阻率明显减小。 2.3 氧化锌压敏电阻电介质特性的变化 2.3.1 介电常数的变化 介电常数的变化将导致压敏电阻电容值的变化[1, 4, 5]。 图 5 所示为氧化锌压敏电阻在 95V/mm 的直流电压及有效值为 65Vrms/mm 交流电压时,进行加速老化试验前后压敏电阻电容随频率的变化曲线,试验时温度为 70℃,加压时间为 500h。从图中可以看出,老化试验后,电容随频率的变化曲线发生了移动,电容值比加压老化试验前有所减小。 图 6 所示为氧化锌压敏电阻经 95V/mm 的直流电压,温度 70℃,110h 老化试验后,压敏电阻电容值随施加电压的变化曲线。从图中看出,电容随电压的增加而减小,而且老化试验后曲线向下移动,即电容值有较大下降。 2.3.2 介质损耗变化 图 7 所示为与图 5 相同的老化试验条件下,在进行直流和交流老化试验前后测量得到的压敏电阻介质损耗因数 tanδ 随频率的变化曲线[1, 4, 5]。在对氧化锌压敏电阻进行交流或直流老化试验后,介质损耗在频率 0.1MHz 以下时都比试验前有所增加。 试验表明,随着老化试验时间、试验时的温度及施加电压幅值的增加,氧化锌压敏电阻电容的减小和介质损耗的增加都将进一步加剧。 3 氧化锌压敏电阻的老化原因 3.1 热激发电流 测量热激发电流(TSC)是常用于研究连续电压作用下电介质老化机理的一种方法。在连续电压作用下,介质内部积累了电荷,试验时,当温度升高,这些电荷因受热而释放出来,便形成热激发电流[1, 4]。 3.1.1 热激发电流的测定 当对经施加直流电压老化后的压敏电阻,用石英管通过以 0.333K/s 一定的速率加温时(不加偏压),可以观察到并测定出热激发电流 TSC,热激发电流是在非平衡状态下的迁移离子向平衡状态的过渡中产生的。通过一定速率的加热,界面附近积累的离子通过扩散又恢复到起始分布状态,而这种扩散是定向的,因而产生热激发电流,所以当压敏电阻经热激发电流测试后

文档评论(0)

yaobanwd + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档