机床热态特性..docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
机床热态特性.

目录 一、传热的基本知识 1 (一)导热 1 (二)对流换热 2 (三)辐射换热 7 二、温度场的求解 7 (一)导热微分方程的建立及边值条件 8 (二)温度场的求解 9 三、热变形与热应力 11 (一)热膨胀与热应变 11 (二)热应力 11 (三)弹性力学基本方程 12 四、机床热态特性测试及其控制 15 (一)热态特性参数的基本概念及测试方案 15 (二)机床热态加工精度的控制 16 参考文献 18 机床热态特性 热量的传递是自然界中一种很普遍的现象,依据热力学第二定律,热量可以自发地从温度高的物体传递到温度低的物体,从而到达到新的热平衡。在金属切削加工领域中,工艺系统的发热与热的传递,破坏工艺系统原有的热平衡,形成新的温度场。由于热胀冷缩的作用,新的温度场必然导致工艺系统各零部件产生热变形和热应力等热效应,经过长期的实践证明这种热效应对机械加工过程有着的重大影响。随着科学技术的进步,这种影响严重制约了现代精密加工和自动化技术的发展。根据联邦德国阿亨工业大学H.Brauning分析:现代机床加工工件的制造制造误差中,由热变形引起的误差比例高达50%,英国伯明翰大学J.Peckenik的调查表明:精密加工中由热变形引起的加工制造误差占的比例为40%~70%;日本垣野羲照也有类似的估计。这些数据资料足以表明工艺系统热变形对加工精度的影响是十分严重的。 研究工艺系统的热特性,首先必须要利用传热学的知识求解出其温度场,然后算出热应力和热变形,最后采用相应的对策控制工艺系统热变形,以提高工艺系统的加工精度。 一、传热的基本知识 机械制造中的工艺系统处于内外热源作用之下,使该系统的温度有高低的差异,而热量总是从高温处向低温处传递,这就是导热。机床作为工艺系统的一个环节,温度也有高、低的差异,再加上机床的内、外约束,就会使机床产生不均匀的热变形,影响机械加工精度。 机床的热变形与热量的传播与温度场有着密切的联系。传热学就是研究这种热量传递与各部分温度间相互关系的一门学科。机床的热量传递是一个复杂的过程,根据热量传递过程中物质的运动特点,一般将热量传递分为三种基本方式:导热、对流换热和辐射换热。 (一)导热 当不同温度的物体之间或同一个物体不同温度的各部分没有宏观相对运动时,通过直接接触,由分子、原子或自由电子等微粒的热运动而传递热量的过程,简称为导热,如机床中轴承和主轴之间及主轴内部之间的热量传递。热传导与物体内部的温度场密切相关,机床温度场是在任一瞬间机床上所有点温度分布的总称,温度场是空间和事件的函数,在直角坐标系中表示形式如式(1.1)所示。 温度相同点集合成的线、面称为等温线、等温面,因为物体内任何一点不可能有两个不同的温度,所以不同的等温线和等温面不会相交且是连续的,如图1-1。 图1-1 等温面及温度梯度 在等温面上由于没有温差,故没有热量传递,而沿着等温面法向将有最大低温度变化率,采用温度梯度来描述最大温度变化率。将温度梯度记为 gradT,即 温度梯度是矢量,其方向是沿等温面的法向n并指向温度增加的一边,大小等于该点在此方向上单位距离所引起的温度增量。 傅立叶定律指出,单位时间内通过等温面单位面积的热流量q,正比于垂直于该截面的温度梯度,其方向正好与温度梯度的方向相反,即 式(1.3)为傅立叶导热定律的数学表达式,其中为材料固有属性所确定的导热系数。 (二)对流换热 运动着的流体与固体壁面之间的热量传递过程称为对流传热,对流传热模式包括由随机的分子运动(扩散)和流体的宏观运动导致的两种能量传输机制。对流换热远比单纯导热复杂,实际上,它是热对流和导热两种热量传递基本方式同时作用的复杂过程。在机械制造工艺系统中空气、切削液、润滑油与立柱、床身、轴承之间的换热方式就属于对流换热。 根据牛顿冷却定律计算公式可得 式中分别为对流换热系数、固体壁面温度与流体温度。因影响对流换热过程的因素很多,所以研究对流换热,要分析影响换热系数的各种因素及求解换热系数的方法。 由于对流换热是运动流体与固体壁面之间的热量传递过程,因而一切有关流体流动和固体壁面的因素,都将影响换热系数的大小。 流体流动的动力特性 对流换热按流体流动的动力特性可分为强迫对流换热和自然对流换热两大类。强迫对流是指流体在风机和泵等机械设备所作用的外力下相对于壁面产生的运动;自然对流则由流体冷、热各部分的密度差产生的浮力而引起的。显然强迫对抗的传热系数要比自然对流的传热系数大得多。 流体流动的状态 流体的流动状态有层流、紊流及处于两者之间的过渡状态。层流时,由于流体微团平行于壁面有规则地呈层状运动,而无横向脉动,因而沿 壁面法向的热量传递只能依靠分子传热。紊流时,流体微团除随主流向前运动外,还存在强烈的横向脉动,因而沿壁

文档评论(0)

kakaxi + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档