- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
[选修生物科学与健康
回归分析 从一组样本数据出发,确定变量之间的数学关系式 对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著 利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度 回归分析与相关分析的区别 相关分析中,变量 x 变量 y 处于平等的地位;回归分析中,变量 y 称为因变量,处在被解释的地位,x 称为自变量,用于预测因变量的变化 相关分析中所涉及的变量 x 和 y 都是随机变量;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量 相关分析主要是描述两个变量之间线性关系的密切程度;回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制 相关系数 相关系数又称线性相关系数.它是衡量变量之间线性相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值范围为[-1,1]。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。 相关系数 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。通常|r|大于0.8时,认为两个变量有很强的线性相关性 相关系数的性质 相关系数的性质 (1)相关系数可正可负; (2)相关系数的区间是[-1,1]; (3)相关系数是线性关联或线性相依的一个度量,它不能用于描述非线性关系; 偏差平方和 偏差平方和 单次测量值x1与测定平均值之差的平方的总和,以Q表示,Q值越大,表示测定值之间的差异越大,用偏差平方和表征差异的优点是能充分利用测度数据所提供的信息,缺点是Q随着测定值数目的增多而增大,为了克服这一缺点,用方差S2=Q/f来表征差异的大小,其中f为自由度。如一个测定结果受多个因素影响,则总偏差平方和等于实验误差与各因素(包括固定因素与随机因素)所形成的偏差平方和之总和。 残差平方和 英文:residual sum of squares[1] 概念: 为了明确解释变量和随机误差各产生的效应是多少,统计学上把数据点与它在回归直线上相应位置的差异称残差,把每个残差的平方后加起来 称为残差平方和,它表示随机误差的效应。 相关指数R^2 相关指数R^2表示一元多项式回归方程拟合度的高低,或者说表示一元多项式回归方程估测的可靠程度的高低。 R^2=1-(∑(y-y估测值)^2÷∑(y-y平均值)^2) 相关指数R^2用来刻画回归效果时,R^2越大,说明模型的拟合效果越好。 * * * Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 复习回顾 1、线性回归模型: y=bx+a+e, 其中a和b为模型的未知参数,e称为随机误差。 2、数据点和它在回归直线上相应位置的差异 是随机误差的效应,称 为残差。 3、对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号表示为: 称为残差平方和,它代表了随机误差的效应。 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 刻画模型拟合的精度 相关指数: R2取值越大,则残差平方和越小,即模型的拟合效果越好. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 1)确定解释变量和预报变量; 2)画出散点图; 3)确定回归方程
文档评论(0)