- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
主成分分析法主成分分析法
2.在matlab中提供了直接计算主成分的命令:
(1).princomp
??? 功能:主成分分析
??? 格式:PC=princomp(X)
???????? ?[PC,SCORE,latent,tsquare]=princomp(X)
??? 说明:[PC,SCORE,latent,tsquare]=princomp(X)对数据矩阵X进行主成分分析,给出各主成分(PC)、所谓的Z-得分(SCORE)、X的方差矩阵的特征值(latent)和每个数据点的HotellingT2统计量(tsquare)。
(2).pcacov
??? 功能:运用协方差矩阵进行主成分分析
??? 格式:PC=pcacov(X)
????????? [PC,latent,explained]=pcacov(X)
?? ?说明:[PC,latent,explained]=pcacov(X)通过协方差矩阵X进行主成分分析,返回主成分(PC)、协方差矩阵X的特征值(latent)和每个特征向量表征在观测量总方差中所占的百分数(explained)。
(3).pcares
??? 功能:主成分分析的残差
??? 格式:residuals=pcares(X,ndim)
??? 说明:pcares(X,ndim)返回保留X的ndim个主成分所获的残差。注意,ndim是一个标量,必须小于X的列数。而且,X是数据矩阵,而不是协方差矩阵。
主成分分析方法(举例)(2008-04-26 21:41:50)
杂谈? 分类:归纳整理 3. 主成分分析方法应用实例1) 实例1: 流域系统的主成分分析(张超,1984)表3.5.1(点击显示该表)给出了某流域系统57个流域盆地的9项变量指标。其中,x1代表流域盆地总高度(m),x2代表流域盆地山口的海拔高度(m),x3代表流域盆地周长(m),x4代表河道总长度(m),x5代表河道总数,x6代表平均分叉率,x7代表河谷最大坡度(度),x8代表河源数, x9代表流域盆地面积(km2)。注:表中数据详见书本87和88页。(1) 分析过程:① 将表3.5.1中的原始数据作标准化处理,然后将它们代入相关系数公式计算,得到相关系数矩阵(表3.5.2)。② 由相关系数矩阵计算特征值,以及各个主成分的贡献率与累计贡献率(见表3.5.3)。由表3.5.3可知,第一,第二,第三主成分的累计贡献率已高达86.5%,故只需求出第一、第二、第三主成分z1,z2,z3即可。
z3上的载荷
(表3.5.4)。(2) 结果分析:▲ 第一主成分z1与x1,x3,x4,x5,x8,x9有较大的正相关,可以看作是流域盆地规模的代表;▲ 第二主成分z2与x2有较大的正相关,与x7有较大的负相关,分可以看作是流域侵蚀状况的代表;▲ 第三主成分z3与x6有较大的正相关,可以看作是河系形态的代表;▲ 根据主成分载荷,该流域系统的9项要素可以被归纳为三类,即流域盆地的规模,流域侵蚀状况和流域河系形态。如果选取其中相关系数绝对值最大者作为代表,则流域面积、流域盆地出口的海拔高度和分叉率可作为这三类要素的代表。
主成分分析法
??? 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。依次类推,I个变量就有I个主成分。
1.主成分分析的基本原理??? 主成分分析:把原来多个变量划为少数几个综合指标的一种统计分析方法,是一种降维处理技术。)记原来的变量指标为x1,x2,…,xP,它们的综合指标——新变量指标为z1,z2,…,zm(m≤p),则z1,z2,…,zm分别称为原变量指标x1,x2,…,xP的第一,第二,…,第m主成分,在实际问题的分析中,常挑选前几个最大的主成分。
■ 系数lij的确定原则(单击展开显示)
① zi与zj(i≠j;i,j=1,2,…,m)相互无关;
文档评论(0)