信号参数估计..docx

  1. 1、本文档共18页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
信号参数估计.

摘要:信号参数估计是现代信号处理的重要研究内容之一,在频域中进行傅里叶变换研究信号,是研究确定性信号最简单且有效的手段,但在现代信号分析中,对于常见的随机信号,不可能用清楚的数学关系式来描述,其傅里叶变换更不存在,转而可以利用给定的若干个样本数据估计来估计信号的参数。本学期在导师的指导下我学习了这门课程,了解到相关的知识,深刻体会了信号参数估计的理论基础。本文主要介绍我对信号参数估计中的现代谱估计的理解和有关体会。关键字:参数估计;随机信号;谱估计引言: 功率谱估计是随机信号处理的重要内容,其技术渊源很长,而且在过去的40余年中获得了飞速的发展。涉及到信号与系统、随机信号分析、概率统计、矩阵代数等一系列的基础学科,广泛应用于人民的日常生活及军事、工业、农业活动中,是一个具有强大生命力的研究领域。现代谱估计的方法又大致可分为参数模型谱估计和非参数模型谱估计,前者有AR模型、MA模型、ARMA模型、PRONY模型等,后者有最小方差方法、多分量的MUSIC方法等。一 现代谱估计方法的发展1.1功率谱研究的发展过程功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内提取被淹没在噪声中的有用信号。现代谱估计的提出主要是针对经典谱估计(周期图和自相关法)的分辨率和方差性能不好的问题。1967 年,Burg 提出的最大嫡谱估计,即是朝着高分辨率谱估计所作的最有意义的努力。虽然,Bartlett 在 1948年,Parzem 于 1957 年都曾经建议用自回归模型做谱估计,但在 Burg 的论文发表之前,都没有引起注意。现代谱估计的内容极其丰富,涉及的学科及应用领域也相当广泛,至今,每年都有大量的论文出现。非参数模型谱估计的特点是其模型不是用有限参数来描述,而直接由相关函数序列得到,这种方法能提高低信噪比时的谱分辨率。参数模型谱估计是先根据过程的先验信息或者一些假定,建立一个数学模型来表示所给定采样数据的过程,或者选择一个较好的近似实际模型,而后利用采样数据序列或者自相关序列,估计该模型的参数,最后把参数代入到该模型对应的理论功率谱表达式,得到所需要的谱估计。1.2 功率谱估计应用及用途功率谱估计有着极其广泛的应用,不仅在认识一个随机信号时,需要估计它的功率谱。它还被广泛地应用于各种信号处理中。在信号处理的许多场所,要求预先知道信号的功率谱密度(或自相关函数)。功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。维纳滤波、卡尔曼滤波,可用于自适应滤波,信号波形预测等(火控系统中的飞机航迹预判)。二.现代谱估计现代功率谱估计即参数谱估计方法是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱,主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的。常用模型有 ARMA 模型、 AR 模型、 MA 模型,AR模型的正则方程是一组线性方程,而MA和ARMA模型是非线性方程。由于AR模型具有一系列良好的性能,因此被研究最多也得到最广泛的应用。2.1 AR模型AR 模型又称为自回归模型,是一个全极点的模型,可用如下差分方程来表示: (2-1)其中,p是 A R模型的阶数, {}=l , 2 , …, p是p阶 A R模型的参数.将该模型记为AR( p) ,它的系统转移函数为 (2-2) 在功率谱估计中,若观测的数据 x(n) 是平稳随机过程,则该系统的输入w( n ) 也可认为是平稳的,因 而根据线性系统对平稳随机信号的响应理论可得观测数据的功率谱为 (2-3)由式可知,利用A R模型进行功率谱估计的实质是求解模型系数 {} 和的问 题.将式 ( 1 )两端乘以x ( n-m ) 求平均 ( 数学期望) ,可以求得观测数据的A R( p) 模型参数与自相关函数的关系式为 (2-4)可见, 阶 AR模型输出的相关函数具有递推的性质, 因而选用 AR模型进行谱估计只需较少的观测数据将式 ( 4 )写成矩阵形式得 (2-5) 上式就是著名的Yule-Walker( Y—W)方程.它表明,只要已知观测数据的自相关数,就能求出AR模型参数{} 和,进而按式 ( 3 )求得信号功率谱的估值。 另外,从 AR模型的差分方程式可知,该模型的现在输出值是它本身过去值的回归,这与预测器存在着一定的相似性,它们之间有着非常密切的关系,即它们的系统函数互为倒数,也就是说预测误差滤波器 就是 AR信号模型H(z)的逆滤波器.因此通过预测误差滤波器优化设计使预测均方误差最小就可求得A R信号模型的最优参数,即P阶线性预测器的预测系数{

文档评论(0)

tiangou + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档