常用图像去模糊算法分析与对比.doc

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
常用图像去模糊算法分析与对比

2012-2013学年度第二学期 数字图像处理课程设计 题目: 常用图像去模糊算法分析与对比 院 系: 自动化学院 专 业: 自动化 班 级: 控实1001班 姓 名: 朱延俊 学 号: U201014240 指导教师: 谭山 报告时间: 2013.6.24 由于光学系统的装配、拍摄对焦不准或拍摄时的移动等均会使图像模糊,对诸如红外成像系统等离散成像系统,探测单元的非点元性质是图像模糊的重要原因之一,这些模糊图像一般可以用卷积过程描述。 图像复原的基本问题是去模糊,即依据某种模糊和噪声降质的观测来估计原来的图像。反卷积是使模糊的图像复原的基本方法,如果成像系统的模糊函数已知,则去模糊成为常规的反卷积问题,否则,是盲解卷积问题。一般的,模糊函数是一个低通滤波器,使输入图像的高频成分收到抑制甚至丧失。反卷积是逆过程,需要恢复低频信息并找回丢失的高频成分。噪声的存在将可能使反卷积的结果偏离真实的解,因此需要在图像信号复原和噪声放大之间做出适当的折中。 图像退化/复原可以用图0所示的模型来表示(g = Hf + n): 图0 1.盲目解卷积算法(Blind Deconvolution Algorithm) 图像恢复是一种改善图像质量的处理技术, 将降质了的图像恢复成原来的图像。目前, 图像恢复的方法很多, 然而在图像恢复过程中, 最难解决的问题之一是如何获得恢复算法中PSF的恰当估计, 那些不以PSF 知识为基础的图像恢复方法统称为盲去卷积算法。盲去卷积的方法已经受到了人们的极大重视, 对于给定的原图像, 使其退化, 得到退化图像, 再利用盲去卷积的方法使其恢复, 得到视觉质量上更好的图像。 盲解卷积的方法是以最大似然估计(MLE )为基础的,即一种用被随机噪声所干扰的量进行估计的最优化策略。似然函数用g ( x, y )、f ( x, y ) 和h( x, y )来加以表达, 然后问题就变成了寻求最大似然函数。在盲解卷积中, 最优化问题用规定的约束条件并假定收敛时通过迭代来求解, 得到的最大f( x, y )和h (x, y )就是还原的图像和PSF。 【函数】deconvblind 【功能】使用盲解卷积算法对图像进行去模糊 [J,PSF] = DECONVBLIND(I,INITPSF) deconvolves image I using maximum likelihood algorithm, returning both deblurred image J and a restored point-spread function PSF. The resulting PSF is a positive array of the same size as the INITPSF, normalized so its sum adds to 1. The PSF restoration is affected strongly by the size of its initial guess, INITPSF, and less by its values (an array of ones is a safer guess). 使用盲解卷积对图像I进行去模糊,得到去模糊后的图像J和重建点扩散函数矩阵PSF。参量INITPSF为矩阵,表示重建点扩散函数矩阵的初始值。 [J,PSF] = DECONVBLIND(I,INITPSF,NUMIT) 参量NUMIT为迭代次数,默认值为10。 [J,PSF] = DECONVBLIND(I,INITPSF,NUMIT,DAMPAR) 参量DAMPAR表示输出图像与输入图像的偏离阈值,该函数对于偏离阈值的像素不再进行迭代计算,这抑制了像素上的噪声,又保存了图像的细节。 [J,PSF] = DECONVBLIND(I,INITPSF,NUMIT,DAMPAR,WEIGHT) 参量WEIGHT为矩阵,其元素为图像每个像素的权值,默认值为与输入图像相同维数的单位矩阵。 [J,PSF] = DECONVBLIND(I,INITPSF,NUMIT,DAMPAR,WEIGHT,READOUT) 参量READOUT制定噪声类型,默认值为0。 【编程实现】 I = checkerboard(8);%创建棋盘:为8或者30 PSF = fspecial(gaussian,7,10);%设置滤波器 V =

文档评论(0)

zilaiye + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档