K-Means算法实验报告..docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
题目: K-Means聚类算法分析与实现 学 院 xxxxxxxxxxxxxxxxxxxx 专 业 xxxxxxxxxxxxxxxx 学 号 xxxxxxxxxxx 姓 名 xxxx 指导教师 xxxx 20xx年x月xx日 K-Means聚类算法 KMeans算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。 K-Means聚类算法主要分为三个步骤: (1)第一步是为待聚类的点寻找聚类中心 (2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去 (3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求为止 下图展示了对n个样本点进行K-means聚类的效果,这里k取2: (a)未聚类的初始点集 (b)随机选取两个点作为聚类中心 (c)计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (d)计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 (e)重复(c),计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (f)重复(d),计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 Matlab实现: %随机获取150个点 X = [randn(50,2)+ones(50,2);randn(50,2)-ones(50,2);randn(50,2)+[ones(50,1),-ones(50,1)]]; ? opts = statset(Display,final); ? %调用Kmeans函数 %X N*P的数据矩阵 %Idx N*1的向量,存储的是每个点的聚类标号 %Ctrs K*P的矩阵,存储的是K个聚类质心位置 %SumD 1*K的和向量,存储的是类间所有点与该类质心点距离之和 %D N*K的矩阵,存储的是每个点与所有质心的距离; ? [Idx,Ctrs,SumD,D] = kmeans(X,3,Replicates,3,Options,opts); ? %画出聚类为1的点。X(Idx==1,1),为第一类的样本的第一个坐标;X(Idx==1,2)为第二类的样本的第二个坐标 plot(X(Idx==1,1),X(Idx==1,2),r.,MarkerSize,14) hold on plot(X(Idx==2,1),X(Idx==2,2),b.,MarkerSize,14) hold on plot(X(Idx==3,1),X(Idx==3,2),g.,MarkerSize,14) ? %绘出聚类中心点,kx表示是圆形 plot(Ctrs(:,1),Ctrs(:,2),kx,MarkerSize,14,LineWidth,4) plot(Ctrs(:,1),Ctrs(:,2),kx,MarkerSize,14,LineWidth,4) plot(Ctrs(:,1),Ctrs(:,2),kx,MarkerSize,14,LineWidth,4) ? legend(Cluster 1,Cluster 2,Cluster 3,Centroids,Location,NW) ? Ctrs SumD 执行结果: Kmeans 6 iterations, total sum of distances = 204.821 10 iterations, total sum of distances = 205.886 16 iterations, total sum of distances = 204.821 9 iterations, total sum of distances = 205.886 ........ 9 iterations, total sum of distances = 205.886 8 iterations, total sum of distances = 204.821 8 iterations, total sum of distances = 204.821 14 iterations, total sum of distances = 205.886 14 iterations, total sum of dis

文档评论(0)

tiangou + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档