Puma与数据高速公路——实时数据流与分析.pptxVIP

Puma与数据高速公路——实时数据流与分析.pptx

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Real-time Analytics at Facebook:Data Freeway and PumaAgenda1Analytics and Real-time2Data Freeway3Puma4Future WorksAnalytics and Real-timewhat and whyFacebook InsightsUse casesWebsites/Ads/Apps/PagesTime seriesDemographic break-downsUnique counts/heavy hittersMajor challengesScalabilityLatencyAnalytics based on Hadoop/HiveDailyHourlyseconds seconds Pipeline JobsCopier/LoaderHTTPMySQLScribeNFSHive Hadoop3000-node Hadoop clusterCopier/Loader: Map-Reduce hides machine failuresPipeline Jobs: Hive allows SQL-like syntaxGood scalability, but poor latency! 24 – 48 hours.How to Get Lower Latency?Small-batch ProcessingRun Map-reduce/Hive every hour, every15 min, every 5 min, …Stream ProcessingAggregate the data as soon as it arrivesHow to solve the reliability problem?How do we reduce per-batchoverhead?DecisionsStream Processing wins!Data FreewayScalable Data Stream FrameworkPumaReliable Stream Aggregation EngineData Freewayscalable data streamScribeBatchCopierHDFStail/fopenScribe Mid-TierScribeWritersScribe ClientsNFSLog ConsumerSimple push/RPC-based logging systemOpen-sourced in 2008. 100 log categories at that time.Routing driven by static configuration.Data FreewayContinuousCopierC2DataNodeC1HDFSPTail(in the plan)C2DataNodeC1ScribeClientsPTailCalligraphusMid-tierCalligraphusWritersHDFSLog ConsumerZookeeper9GB/sec at peak, 10 sec latency, 2500 log categoriesCalligraphusRPC ? File SystemEach log category is represented by 1 or more FS directoriesEach directory is an ordered list of filesBucketing supportApplication buckets are application-defined shards.Infrastructure buckets allows log streams from x B/s to x GB/sPerformanceLatency: Call sync every 7 secondsThroughput: Easily saturate 1Gbit NICContinuous CopierFile System ? File SystemLow latency and smooth network usageDeploymentImplemented as long-running map-only jobCan move to any simple job schedulerCoordinationUse lock files on HDFS for nowPlan to move to ZookeeperPTailcheckpointfilesdirectory directorydirectoryFile

文档评论(0)

报告论文库 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档