第三章熔体与玻璃体..docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第三章 熔体与玻璃体 熔体指高温下形成的液体,当它冷却时会固化转变为固体。冷却速度不同,熔体有两种固化方式:慢冷时,由于冷却慢,质点有足够的时间调整位置做有规则的排列形成晶格,所以熔体慢冷时形成晶体;快冷时,由于冷却速度快,粘度增大太快,质点没来得及做有规则排列就已经固化,因而形成玻璃体。因此玻璃体的结构和熔体的结构有一定的?相似性,也把玻璃体称为过冷液体。 一般玻璃是由玻璃原料加热成熔体冷却而成;同时在很多无机非金属材料中,在材料的使用和制备过程中晶相间都会有熔体和玻璃体存在和产生,影响着材料的性能。例如,耐火材料中存在的玻璃相是决定其高温性能的重要因素,陶瓷釉的质量取决于玻璃体的组成及其与坯体的物化作用,等等。因此了解玻璃体和熔体的结构及与性能的关系是十分必要的。这里熔体和玻璃体的结构主要从原子级结构(0.2~1nm)和亚微观结构(3~几百nm)尺度来考虑。 第一节 硅酸盐熔体的结构 一. 液体的结构(介于晶体和气体之间) 经实验数据证明,液体的结构一般偏向于晶体。对于这一点我们可以从以下几点理解:液体和晶体的体积密度相近;晶体的熔融热比液体的汽化热小得多;晶体的热容与液体的热容相差不大,而和气体相差大;X衍射分析结果表明液体的结构更靠近晶体的结构。 关于液体的结构有两种理论: 1.“近程有序”理论 晶体的结构是近程有序、远程也有序;液体的结构是近程有序而远程没有序。 在液体内部每个中心质点的附近的微小范围内(大约10-20?),认为是近程有序的。超过此范围则无规律性。 2.“核前群”理论 核前群理论是在“近程有序”理论的基础上发展而来的。它也认为每个中心质点的附近有一个有序排列的范围,但越往外规律性越差,熔体是有一个个这样的复杂集团无规则的连接起来。 液体结晶首先要形成晶核,晶核如果继续长大则形成晶体。核前群再发展就成为晶核的胚芽,但核前群不同于晶核,核前群一旦发展为晶核就有界面,就相当于出现新相,而核前群是熔体结构中的一部分,核前群之间没有界面。 液体中随温度的变化,核前群的大小,数量都会发生变化并且处于一种动平衡状态。温度T越高,核前群越小,温度T越低,核前群越大。由此也可以解释液体的结构随温度T变化的规律。 二. 硅酸盐熔体的结构 1. Si-O键的共价模型 Si-O键是一种过渡型键,其共价键性占50%,离子键性占50%。这里要讨论Si-O键的共价模型。 硅原子的电子构型: Si 1S22S22P63S23P2 (最外层有4个电子) 一个3S电子可跃迁到3P轨道上进行SP3的轨道杂化过程,形成4个SP3电子。 SP3杂化轨道,其方向指向正四面体的四个顶角,4个SP3杂化轨道各有一个未成对的电子,所以可以和氧原子配对形成的O-Si-O键角为109°28ˊ,形成[SiO4]四面体。 氧原子的电子构型: O 1S22S22P4 (最外层有6个电子) 氧原子的杂化方式有三种: 按SP3轨道杂化过程杂化,形成4个等价的SP3杂化轨道,一定有两个SP3轨道各形成一个孤对电子,有两个SP3轨道可以和Si原子配对,形成Si-O-Si键角为109°28ˊ。 按SP2轨道杂化,形成3个SP2杂化轨道。其中2个P轨道参与杂化,1个P轨道未参与杂化且带有一个孤对电子;一个SP2杂化轨道上有一个孤对电子,另外两个SP2杂化轨道各有一个电子可以和硅原子配对,形成Si-O-Si键角为120°。 按SP轨道杂化,形成2个SP杂化轨道;其中2个P轨道未参与杂化并各有一对孤对电子,2个SP杂化轨道上各有一个电子可以和硅原子配对,形成Si-O-Si键角为180°。 ∴ Si-O-Si键角有氧原子的杂化方式来决定。 当Si与O结合时,可以与氧原子形成SP3,SP2,SP三种杂化轨道,从而会形成σ键。σ键指电子云沿着原子核之间的连线方向重叠形成的键。 π键指两个电子云侧向重叠形成的键。Si的3d轨道为空的,氧原子中未参与杂化的P轨道可以和Si的3d空轨道相配,形成施主-受主键(即π键)。当氧原子按SP3轨道杂化形成Si-O-Si键角为109°28ˊ时,形成1个σ键;当氧原子按SP2轨道杂化形成Si-O-Si键角为120°时,形成1个σ键和1个π键;当氧原子按SP轨道杂化形成Si-O-Si键角为180°时,形成1个σ键和2个π键。Si-O键中所含π键比例越多,键力越强;但主要的是σ键。 σ键特点: ①一个原子形成σ键的数目小,即原子的配为数低; ②σ键有非常明显的取向,可以形成一定的结构,即可形成[SiO4]四面体; ③σ键键能较高,在熔体中能够持久存在,所以硅酸盐熔体在高温下Si-O 键也难以断裂; ④σ键具有韧性,可使得键角在一定的范围内变化,结构组成部分还

文档评论(0)

sdgr + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档