- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
三维人脸识别系统的设计思路
发布: 2008-2-03 16:29 | 作者: 李华明 | 来源: CSAI | 查看: 376次 | 进入软件测试论坛讨论
领测软件测试网 一、 序言基于生物特征的身份认证技术近年来发展迅速,这其中,利用人脸特征进行身份验证又是最自然直接的手段,相比其它人体生物特征它具有直接、友好、方便的特点,易于为用户所接受。因此计算机人脸识别技术是生物特征最为活跃最有挑战性的领域之一。它结合了认知科学、图象处理、计算机图形学、机器视觉和模式识别等多个研究领域,研究的成果有着广阔的应用前景。
计算机人脸识别由于有着广泛的应用前景而成为计算机模式识别领域的一个十分活跃的研究课题。计算机人脸识别技术也就是利用计算机分析人脸图像,进而从中提取出有效的识别信息,用来辨?quot;身份的一门技术。人脸识别技术应用背景广泛,例如:可用于公安系统的罪犯身份识别、驾驶执照及护照等与实际持证人的核对、银行及海关的监控系统及自动门卫系统等。特别是在非接触环境和不惊动被检测人的情况下,人脸识别技术的优越性远远超过已有的虹膜、指纹等检测方法。在众多科研人员的不懈努力下,迄今为止在计算机人脸识别方面已经取得许多科研成果,产生了一系列的方法与理论,但均存在着这样或那样的限制,如识别率易受姿态、表情、光照等因素的影响。它的困难体现在:
(1)人脸塑性变形(如表情等)的不确定性;
(2)人脸模式的多样性(如胡须、发型、眼镜、化妆等);
(3)图像获取过程中的不确定性(如光照的强度、光源方向等)。
识别人脸主要依据人脸上的特征,也就是说依据那些在不同个体之间存在较大差异而对于同一个人则比较稳定的度量。由于人脸变化复杂,因此特征表述和特征提取十分困难。这诸多因素使得人脸识别成为一项极富挑战性的课题。
通常的面貌识别系统多是针对二维照片或动态视频序列进行研究,以图象处理技术为基础,但是,基于二维照片进行识别存在严重的障碍,无法解决上述的问题对识别的影响。产生这些问题的主要原因是人的面貌本身是三维的,而照片是对三维面貌进行平面投影的结果,在此过程中必然丢掉一部分重要信息。采用三维识别与传统的方法最大的区别就在于,人脸的信息可以更好的表现和存储,例如人脸的特征点的深度信息及点之间的拓扑结构等等。通过更全面的信息,可以较好的解决识别过程中的误识率和虚警率问题,同时由于三维人脸模型具备光照无关性和姿态无关性的特点,能够正确反映出人脸的基本特性,同时人脸主要的三维拓扑结构不受表情的影响,从而形成相对稳定的人脸特征表述。因此基于三维人脸模型的识别方法可以很好的解决目前在这一领域存在的研究瓶颈。国外研究者已经开始研究三维的面貌识别系统,但研究很不充分,并且针对实际应用系统的研究更少。正是基于这样的原因,我们开始了三维人脸识别系统的研究
二、 三维人脸识别过程及系统功能
真正的三维面貌鉴别是自80年代末期开始,目前已经取得了一定的进展。国外三维人脸识别的典型方法主要是利用深度图象自身的几何特征,利用深度图象处理技术,分析面貌曲面的曲率等几何特征,对面貌曲面进行凹凸区域的分割、正侧面轮廓边缘的提取。最早对三维图象面貌识别的研究有Lapreste 提出的基于轮廓线的方法,通过对人脸面貌曲率的分析,提取轮廓线上的特征点,利用轮廓线作为特征进行面貌的识别。LeeMilios 从人脸面貌深度图象中抽取凸区域,这些凸区域形成了特征集,计算出所有凸区域相关的扩展高斯图,两幅面貌特征的匹配就是利用这些扩展高斯图象进行的。当然还有很多基于轮廓线和凸区域的改进方法,例如:凸凹点多阶段融合过程方法、轮廓线的欧氏距离识别方法、轮廓线曲率比较方法等等。但这些方法还停留在理论研究的层次,没有实质的自动化系统的出现。
对于国内而言,三维人脸识别的研究也相应的展开,但与国外的研究相比还处于刚起步的状态。目前,三维数据获取已经成为可能,并已经成熟的在实际工作中使用(如三维激光扫描技术、CT成像技术、结构光方法等),使得三维图形识别技术得到了应用的可能,可以迅速地完成人头三维面貌数据获取。这也为我们的研究提供了实现的基础。
总的来说,要实现一个自动的人脸识别系统主要要完成以下的4个功能:
① 人脸检测(Detection)与分割(Segmentation)。从任意的场景中检测人脸的存在并进行定位,提取出一个人脸。
② 人脸的规范化(Normalization)。校正人脸在尺度、光照和旋转等方面的变化。
③ 人脸表征(Face Representation)。采用某种方法表示出数据库中的已知人脸和检测出的人脸,通常的方法有几何特征、代数特征、特征脸、固定特征模板等。
④ 人脸识别(Recognition)。根据人脸的表征方法,选择适当的匹配
您可能关注的文档
最近下载
- SYT10037-2018海底管道系统.docx VIP
- 《汽车服务工程(第2版)》第十章 二手车服务.ppt VIP
- 《常见运动损伤的预防及处理》课件.pptx VIP
- 基于JAVA的网上购物系统.docx VIP
- 客服质检管理竞聘述职报告.pptx
- 少年谢尔顿第一季台词Young Sheldon S01E10.docx VIP
- 少年谢尔顿第一季台词Young Sheldon S01E09.docx VIP
- 2025《义务教育劳动课程标准(2022年版)》测试题库及答案{共3套}.docx
- 线路架设安全技术交底.docx VIP
- 2019新人教高中英语必修一Unit4Discovering Useful Structures教案.pdf VIP
文档评论(0)