材料表面润湿性前沿综述.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
材料表面润湿性前沿综述

  材料表面润湿性前沿综述 润湿性是材料表面的重要特征之一。随着对自然界中自清洁现象和润湿性可控表面的深入研究,制备无污染、自清洁表面的梦想成为现实。通常将接触角小于90°的表面称为亲水表面( hydrop hilic surface) ,大于90°的表面为疏水表面(hydrop hobic surface) ,而超疏水指表面上水的表观接触角超过150°的一种特殊表面现象。超疏水表面在国防、工农业生产和人们日常生活中有着重要的应用前景,引起了人们的普遍关注。超疏水表面已经被广泛用于天线、门窗防积雪,船、潜艇等外壳减小阻力,石油输送管道内壁、微量注射器针尖防止粘附堵塞,减少损耗,纺织品、皮革制品防水防污等[1]。 1.自然界中的疏水现象   自然界中存在许多无污染、自清洁的动植物表面,如荷叶、水稻、芋头叶、蝴蝶、水黾脚等表面。自清洁表面可通过两种途径制备: (1) 制备超亲水表面,如利用紫外光诱导产生接触角接近0°的超亲水TiO2 表面 ,这种材料已经成功运用于防雾、自洁的透明涂层,其机理是液滴在高能表面上铺展形成液膜,再通过液膜流动,带走表面污物而起到自洁的作用;(2) 制备超疏水表面,对动植物的研究发现,自然界中通过形成超疏水表面从而达到自洁功能的现象更为普遍,最典型的如以荷叶为代表的多种植物叶子表面(荷叶效应) 、蝴蝶等鳞翅目昆虫的翅膀以及水鸟的羽毛等。这类超疏水表面除具有疏水的化学组分外,更重要的是具有微细的表面粗糙结构。如图1a为荷叶表面的显微结构,由微米尺度的细胞和纳米尺度蜡状晶体的双层微观结构组成;图1b为芋头叶表面[2] ,分布了均匀的微/ 纳米结构,大小为8~10μm20~50nm157.0°±2.5°;图1c 为蝶类翅膀上的微细结构,由100μm 左右的扁平囊状物组成,囊状物又由无数对称的几丁质组成的角质层结构;图1d为水鸟羽毛的显微结构,由微米或亚微米尺度的致密排列组成,具有较好的透气性和疏水性。 图1 几种具有超疏水性能的生物表面 (a(b)芋头表面;(c)碟类表面;(d)水鸟表面 2.润湿性的影响因素   固体表面的润湿性由其化学组成和微观结构决定。固体表面自由能越大,越容易被液体润湿,反之亦然。因而,寻求和制备高表面自由能或低表面自由能的固体表面成为制备超亲水和超疏水的前提条件,所以金属或金属氧化物等高能表面常用于制备超亲水表面,而制备超疏水表面常通过在表面覆盖氟碳链或碳烷链降低表面能。   Nakajima 等通过含氟聚合物制备出不同表面粗糙度含TiO2的超疏水性薄膜,研究了接触角、滑动角和表面粗糙度三者之间的关系,在193°C下升华乙酰丙酮铝化合物的方法制备了表面粗糙度平均为93nm ±1.1nm的透明膜,其对水的接触角为0°,氟硅烷修饰后,水接触角达152.5°±1.6°,并且发现这种薄膜的疏水性随着表面粗糙度的减小而减小,当薄膜的平均粗糙度为33nm 时,薄膜不具有超疏水性,与水的接触角仅为120.3°,滑动角随着接触角的增大而减小。Bico等认为固体表面的疏水性除与固体表面的粗糙度有关外,还和液体实际与固体表面接触的分数有关。Dupuis等运用晶格-玻尔兹曼运动公式模拟表面具有排列整齐微突起的超疏水行为,发现接触角随着表面光刻度的增加而增大。Nakajima等[3]发现,粗糙度相同的固体表面接触角并不一定相同,因为固体表面的微细结构对固体表面的疏水性能有很大的影响,针状结构峰越高,接触角约大。   以上理论和实践证明,将低表面能材料、表面适当粗糙化以及微纳米双重结构的有机结合,是制备超疏水表面的有效途径。 3.表面微细结构修饰 随着超疏水膜理论日臻成熟,人们认识到超疏水膜不但受材料表面的化学成分和结构控制,还为表面形貌结构所左右。将含氟材料等低能表面能材料与适当的表面粗糙化有机结合是获取超疏水表面的最佳途径。根据Wenzel 及Cassie的公式推算,提高表面粗糙度必将增强表面疏水性能。因此,研究人员对表面粗糙化进行了探索,并取得了可喜的进展。研究发现 ,膜表面的粗糙度对疏水性能有影响,亲水膜在增加粗糙度后更亲水,疏水膜则更疏水。而且,低表面能材料表面的接触角随着表面粗糙度和孔隙率的增加而递增[4]。因此,超疏水表面制备的最好方式就是设计好表面的微构造。 Barthlott和Neinhuis 等通过观察生物表面的微观结构,认为其自清洁特征是由粗糙表面上微细结构的乳突以及表面蜡状物的存在共同引起的。研究发现,纳米结构对得到具有高接触角的超疏水表面起着重要作用,如通过制备具有纯纳米结构紧密排列的阵列碳纳米管膜 ,纳米管的排列基本与基底垂直、管径均匀、平均外径约60nm ,A

文档评论(0)

juhui05 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档