地统计内插方法 克里金插值(Kriging).pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
地统计内插方法 克里金插值(Kriging)

8.2 Random Field Real Example 式中:C0为块金值;C0+w为基台值;h为样本点的空间距离;α为变程。 8.2 Random Field Insight to Variogram Anisotropic Variogram Isotropic Variogram 8.2 Random Field Insight to Variogram First Law of Geography: “All things are related, but nearby things are more related than distant things” h=20 0 0.15 0.3 0.45 0 0.15 0.3 0.45 h=10 0 0.15 0.3 0.45 0 0.15 0.3 0.45 h=2 0 0.15 0.3 0.45 0 0.15 0.3 0.45 8.2 Random Field Insight to Variogram Isotropic Variogram If h=0 And we have Covariance function 8.2 Random Field Practical Rules for Selecting Variogram The number of sample values used in estimating the variogram must not be 30; The variogram model should not be fitted to variogram data at separation distances greater than ? of the largest dimension of the study area. One should pay more attention to sample variogram values at short lags. Eye fitting (with experiences) usually gives a good start to select a model. 8.3 Simple Kriging Kriging is an optimal estimation method. ?Often called “BLUE”, best linear unbiased estimator–Best, because it aims at minimizing the estimation variance –Linear, because its estimates are weighted linear combinations of the available data –Unbiased as it tries to have zero mean estimation error 8.3 Simple Kriging Suppose Z(x) is a stationary field with The estimator of simple Kriging is as follows 8.3 Simple Kriging is often referred to as the bias The difference between the estimated value u*(xo) and the unknown true value u(xo) The expectation of estimation error, This (simple kriging) estimator is unbiased even without any condition on the weighting coefficients wi 8.3 Simple Kriging The variance of estimation error is 8.3 Simple Kriging The variance of estimation error is (Kriging variance) 8.3 Simple Kriging The variance of estimation error is = + + + … Minimize the Kriging variance, 8.3 Simple Kriging The simplified form is The matrix form is (Kriging variance) 8.3 Simple Kriging Classwork Deriv

文档评论(0)

sb9185sb + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档