- 1、本文档共9页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
PCB板去耦电容大小选择与布置
PCB板去耦电容大小选择与布置去耦电容不是越多越好,而是要注意滤波的效果。设计PCB印制线路板时,电源输入端跨接一个10μF~100μF的电解电容器,每个集成芯片的电源-地之间配置一个0.01μF的陶瓷电容器。一方面提供和吸收该集成电路开门关门瞬间的充放电能,另一方面旁路掉该器件的高频噪声。一、PCB板中去耦电容的分类 去耦电容在补偿集成片或电路板工作电压跌落时能起到储能作用。它可以分成整体的、局部的和板间的三种。整体去耦电容又称旁路电容,它工作于低频(1MHz)范围状态,为整个电路板提供一个电流源,补偿电路板工作时产生的ΔI噪声电流,保证工作电源电压的稳定。它的大小为PCB上所有负载电容和的50~100倍。它应放置在紧靠PCB外接电源线和地线的地方,印制线密度很高的地方。这不仅不会减小低频去耦,而且还会为PCB上布置关键性的印制线提供空间。 局部去耦电容有两个作用。第一,出于功能上的考虑:通过电容的充放电使集成片得到的供电电压比较平稳,不会由于电压的暂时跌落导致集成片功能受到影响;第二,出于EMC考虑:为集成片的瞬变电流提供就近的高频通道,使电流不至于通过环路面积较大的供电线路,从而大大减小向外的辐射噪声。同时由于各集成片拥有自己的高频通道,相互之间没有公共阻抗,抑止了其阻抗耦合。局部去耦电容安装在每个集成片的电源端子和接地端子之间,并尽量靠近集成片。 板间去耦电容是指电源面和接地面之间的电容,它是高频率时去耦电流的主要来源。板间电容可以通过增加电源层和接地层间面积来增大。在PCB中,一些接地面可以布到了电源层,移去这些接地面,用电源隔离区代之,可以增加板间电容。二、PCB板中去耦电容的大小 在直流电源回路中,负载的变化会引起电源噪声。例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。配置去耦电容可以抑制因负载变化而产生的噪声,是印制电路板的可靠性设计的一种常规做法,好的高频去耦电容可以去除高到1GHz的高频成分。陶瓷片电容或多层陶瓷电容的高频特性较好。设计印制线路板时,每个集成电路的电源、地之间都要加一个去耦电容。去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成电路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声。去耦电容的配置原则如下: 1、电源分配滤波电容 电源输入端跨接一个10μF~100μF的电解电容器,如果印制电路板的位置允许,采用以上的电解电容器的抗干扰效果会更好。1μF,10μF电容,并行共振频率在20MHz以上,去除高频率噪声的效果要好一些。在电源进入印制板的地方和一个1μF或10μF的去高频电容往往是有利的,即使是用电池供电的系统也需要这种电容。 2、芯片配置去耦电容 为每个集成电路芯片配置一个0.01μF的陶瓷电容器。数字电路中典型的去耦电容为0.1/μF的去耦电容有5nH分布电感,它的并行共振频率在7MHz左右,也就是说对于10MHz以下的噪声有较好的去耦作用,对40MHz以上的噪声几乎不起作用。如遇到印制电路板空间小而装不下时,可每4~10个芯片配置一个1μF~10μF钽电解电容器,这种器件的高频阻抗特别小,在500kHz~20MHz范围内阻抗小于1μF~10μF而且漏电流很小(0.5μA以下)。去耦电容值的选取并不严格,可按C=1/f计算,即10MHz取0.1μF。对微控制器构成的系统,取0.1μF~0.01μF之间都可以。 3、必要时加蓄放电容 每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10μF。通常使用的大电容为电解电容,但是在滤波频率比较高时,最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用钽电容或聚碳酸酯电容。三、PCB板中合理布置去耦电容 (一)电容的等效模型在用电容抑制电磁骚扰和滤波的时候,最容易忽视的问题就是电容引线对滤波效果的影响。电容器的容抗与频率成反比,正是利用这一特性,将电容并联在信号线与地线之间起到对高频噪声的旁路作用。然而,在实际工程中,很多人发现这种方法并不能起到预期滤除噪声的效果,面对顽固的电磁噪声束手无策。出现这种情况的一个原因是忽略了电容引线对旁路效果的影响。 实际电容器是由等效电感(ESL)、电容和等效电阻(ESR)构成的串联网络。 理想电容的阻抗是随着频率的升高降低,而实际电容的阻抗是图6-7所示网络的阻抗特性,在频率较低的时候,呈现电容特性,即阻抗随频率的增加而降低,在某一点发生谐振,在这点电容的阻抗等于等效串联电阻ESR。在谐振点以上,由于ESL的作用,电容阻抗随着频率的升高而增加,这使电容呈现电感的阻抗特性。在谐振点以上,由于电容的阻抗增加,因此对高频噪声的旁路作用减弱,甚至
您可能关注的文档
最近下载
- 必威体育精装版企业会计准则(完整版)(新).pdf
- 2023-2024年度执业药师继续教育便秘的中药治疗参考答案.docx VIP
- 江苏省普通高中2018级学生课程调整方案.pdf
- 联排别墅独立别墅施工组织设计.pdf
- 【地方标准】DB37T 391-2004 山东ⅠⅡⅢ ⅣⅤ型日光温室(冬暖大棚)建造技术规范.pdf
- 2022年湖南省邵阳市中考语文真题(含答案解析).docx
- 2025届全国高考名校模考作文--漫画:从深渊爬到地面一样很厉害 .pdf
- 大学生消防安全PPT课件.pptx VIP
- 幼儿园中班主题教案《新年好》.pptx
- 人教版高中语文必修五《边城》课件(43张PPT).pptx
文档评论(0)