- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Fluent中的多相模型及求解
Fluent中的多相模型及求解;参考书目;主要内容;1. 有限体积法;如果将上面的控制体V改为无穷小微元,则可推出守恒形式的微分方程,其通用形式如下:;直接数值模拟方法(Direct Numerical Simulation):直接求解三维瞬态控制方程的方法,需要划分精细的空间网格,采用很小的时间步长,计算量很大。
Reynolds平均法:用时间平均值与脉动值之和代替流动变量,将其代入基本控制方程,并对时间取平均,得到Reynolds湍流方程,一般形式如下:;考虑变量f取流动速度ui的情况,与基本控制方程相比,时均流动的方程里多出与 有关的项,定义为Reynolds湍流应力:;两类湍流模型,把湍流的脉动值和时均值联系起来:
Reynolds应力模型——对Reynolds湍流应力作出某种假定,建立应力的表达式。
涡粘模型——引入新的湍流模型方程。
Boussinesq(1877)针对二维流动,对比于层流粘性系数m,提出在湍流中可用下式来表示Reynolds应力:;其中, 为湍动粘度(涡粘系数), 为时均速度, 为“Kronecker delta”符号,k为湍动能。;最基本的2方程模型是标准k-e模型,分别引入关于湍动能k和湍动耗散率e的方程,;有限体积法:又称控制体积法。
将计算区域划分为网格,使每个网格点周围有一个互不重复的控制体积,将待解微分方程(控制方程)对每一个控制体积积分,从而得到一组离散方程。
未知量是网格点上的因变量f。
离散方程的物理意义:因变量f在有限大小的控制体积中的守恒原理。
Fluent软件就是基于有限体积法编写而成。;2. Fluent中的多相流动模型;Flow Regimes;多相流模型;Mixture模型:一种简化的多相流模型,用于模拟各相有不同速度的多相流,但是假定了在短空间尺度上局部的平衡,相之间的耦合很强。也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流。
典型的应用——沉降(sedimentation)、气旋分离器、低载荷作用下的多粒子流动、气相容积率很低的泡状流。
Eulerian模型:可以模拟多相分离流及相互作用的相(液体、气体、固体),与离散相模型Eulerian-Lagrangian方案只用于离散相不同,在多相流模型中Eulerian方案用于模型中的每一相。;3. 流场中的颗粒的受力分析;固相颗粒的几何特性:
当量粒径:颗粒形状一般不规则,通常定义一个当量粒径作为颗粒大小的度量,其方法依颗粒大小不同而异。
等容粒径:体积与颗粒相等的球体直径。
颗粒体积为V,则等容粒径为
类似的,已知颗粒质量m和密度,可得
形状:颗粒整体的几何形态,以球形为标准,定义球度系数来度量颗粒的不同形状。
圆度:颗粒棱角的尖钝程度。;分类;6. Basset力,发生在粘性流体中,与运动的不稳定性有关
7. Magnus升力,由于颗粒旋转产生,
8. Saffman升力,流场中存在速度梯度,颗粒受到的升力作用。在速度边界层中,该力的影响比较明显。
9. 热泳力,光电泳力,声泳力:在有温度梯度的流场中,使颗粒从高温区向低温区运动的力通常称为热泳力。颗粒吸收光能并加热附近的气体分子,产生类似于热泳力的光电泳力。在声场中,颗粒随着气体振动作用而产生漂移运动。通常情况下,光电泳力和声泳力可忽略不计。
10. 颗粒所受的静电力,带有电荷的颗粒在运动中将受到静电力的作用。;4. 单颗粒及颗粒群的阻力;颗粒之间的相互作用;颗粒的尾流;阻力01;阻力02;旋涡脱落形式;颗粒群阻力的测定;经验公式;两个阻力公式相差很大的原因:
实验本身的误差,颗粒群阻力的测量远比单颗粒阻力测量困难,但这些实验的总的趋势应该说是可信的。
有一些未被认识的因素影响着颗粒的运动。
实验条件不同,如流动的湍流度、颗粒粗糙度、以及粒度非均匀性等,颗粒的静电效应、旋转效应、流体的入口条件等,也是造成阻力公式不尽相同的原因。;5. 气-液两相流相界面迁移过程的数值模拟方法;气-液两相流的特殊性;(1)高度函数法;(2)相界面追踪的PIC方法;(3)MAC方法;(4)线段法;(5)边界积分法;边界积分法的求解过程:
(1)构造伪弧长参数样条曲线:将自由表面采用伪弧长参数样条曲线来表示,把自由表面分成几段,节点之间的弧长用直线距离来代替,然后用三次样条差值求出相关的函数。
(2)用迭代法求解边界积分方程:在迭代求解过程中,一般采用亚松弛,例如松弛因子可取0.8。 用势流理论得到离散方程组。
(3)重分网格:在追踪自由面位置的过程中,为了避免网格畸形,必须采用重分网格技术。
主要优点:利用势函数将所研究问题的空间维数降低一阶,但又不影响解的精度;能直接计算出界面速度,追踪界面变
文档评论(0)