- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
* How to explore points near the global minimum One way to make the genetic algorithm explore a wider range of points — that is, to increase the diversity of the populations — is to increase the Initial range. * Range of individuals in each generation a much wider range of individuals. By the second generation there are individuals greater than 21, and by generation 12, the algorithm finds a best individual that is approximately equal to 21. all individuals are between -2 and 2.5. While this range is larger than the default Initial range of [0;1], due to mutation, it is not large enough to explore points near the global minimum at x = 21. * Ex2: Constrained Minimization Using GA minimize a simple fitness function of two variables x1 and x2
min f(x) = 100 * (x1^2 - x2) ^2 + (1 - x1)^2;
x the following two nonlinear constraints and bounds are satisfied x1*x2 + x1 - x2 + 1.5 =0, (nonlinear constraint) 10 - x1*x2 =0, (nonlinear constraint) 0 = x1 = 1, and (bound) 0 = x2 = 13 (bound) * Define of objective function and constrains function [c, ceq] = simple_constraint(x)
c = [1.5 + x(1)*x(2) + x(1) - x(2);
-x(1)*x(2) + 10];
ceq = []; function y = simple_fitness(x) y = 100 * (x(1)^2 - x(2)) ^2 + (1 - x(1))^2; 0 = x1 = 1 0 = x2 = 13 * Result of Ex2 * M-file Generated by GATool function [X,FVAL,REASON,OUTPUT,POPULATION,SCORES] = cm_ga %%Fitness function fitnessFunction = @simple_fitness; %%Number of Variables nvars = 2 ; %Linear inequality constraints Aineq = [];Bineq = []; %Linear equality constraints Aeq = [];Beq = []; %Bounds LB = [0 0 ];UB = [1 13 ]; %Nonlinear constraints nonlconFunction = @simple_constraint; %Start with default options options = gaoptimset; %%Modify some parameters options = gaoptimset(options,PopulationSize ,100); options = gaoptimset(options,MutationFcn ,{ @mutationgaussian 1 1 }); options = gaoptimset(options,Display ,off); %%Run GA [X,FVAL,REASON,OUTPUT,POPULATIO
您可能关注的文档
最近下载
- 奇普 KIP 7170 工程复印机中文维修手册 维护手册 维修资料.pdf VIP
- 建工三建脚手架外架搭设标准文明施工图集.ppt VIP
- 心脑血管病健康宣讲课件.pptx VIP
- 税务发票管理培训课件.pptx VIP
- STEMI诊断和治疗指南解读—STEMI患者的急诊救治.pdf
- 重庆专升本数学2014-2025年真题试卷及答案汇总.docx VIP
- 2025年医疗卫生系统招聘考试(护理学)考前冲刺试题及答案.docx VIP
- (完整版)初中数学新课程标准(2011版)测试题(有答案)2021.docx
- 化学高考命题方向与复习策略(夏建华).ppt VIP
- 半导体级四氯化铪的制备方法.pdf VIP
文档评论(0)