Complex networks and decentralized search algorithms.pdf

Complex networks and decentralized search algorithms.pdf

  1. 1、本文档共25页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Complex networks and decentralized search algorithms.pdf

Complex Networks and Decentralized Search Algorithms Jon Kleinberg∗ Abstract. The study of complex networks has emerged over the past several years as a theme spanning many disciplines, ranging from mathematics and computer science to the social and biological sciences. A significant amount of recent work in this area has focused on the development of random graph models that capture some of the qualitative properties observed in large-scale network data; such models have the potential to help us reason, at a general level, about the ways in which real-world networks are organized. We survey one particular line of network research, concerned with small-world phe- nomena and decentralized search algorithms, that illustrates this style of analysis. We begin by describing a well-known experiment that provided the first empirical basis for the “six degrees of separation” phenomenon in social networks; we then discuss some probabilistic network models motivated by this work, illustrating how these models lead to novel algorithmic and graph-theoretic questions, and how they are supported by recent empirical studies of large social networks. Mathematics Subject Classification (2000). Primary 68R10; Secondary 05C80, 91D30. Keywords. Random graphs, complex networks, search algorithms, social network anal- ysis. 1. Introduction Over the past decade, the study of complex networks has emerged as a theme running through research in a wide range of areas. The growth of the Internet and the World Wide Web has led computer scientists to seek ways to manage the complexity of these networks, and to help users navigate their vast information content. Social scientists have been confronted by social network data on a scale previously unimagined: datasets on communication within organizations, o

文档评论(0)

cai + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档