网站大量收购闲置独家精品文档,联系QQ:2885784924

Evolving Least Squares Support Vector Machines for Stock.pdf

Evolving Least Squares Support Vector Machines for Stock.pdf

  1. 1、本文档共43页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Evolving Least Squares Support Vector Machines for Stock.pdf

Evolving Least Squares Support Vector Machines for Stock Market Trend Mining * 1 2 † 3 1 2 Lean Yu , Huanhuan Chen , Shouyang Wang , Kin Keung Lai 1 Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China 2 Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 3 School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom Abstract — In this study, an evolving least squares support vector machine (LSSVM) learning paradigm with a mixed kernel is proposed to explore stock market trends. In the proposed learning paradigm, a genetic algorithm (GA), one of the most popular evolutionary algorithms (EAs), is first used to select input features for LSSVM learning, i.e., evolution of input features. Then another GA is used for parameters optimization of LSSVM, i.e., evolution of algorithmic parameters. Finally, the evolving LSSVM learning paradigm with best feature subset, optimal parameters and a mixed kernel is used to predict stock market movement direction in terms of historical data series. For illustration and evaluation purposes, three important stock indices, SP 500 Index, Dow Jones Industrial Average Index, and New York Stock Exchange Index, are used as testing targets. Experimental results obtained reveal that the proposed evolving LSSVM can produce some forecasting models that are easier to be interpreted by using a small number of predictive features and are more efficient than other parameter optimization method

您可能关注的文档

文档评论(0)

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档