《Local Deep Kernel Learning for Efficient Non-linear SVM Prediction 2016微软 Cijo》.pdfVIP

《Local Deep Kernel Learning for Efficient Non-linear SVM Prediction 2016微软 Cijo》.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Local Deep Kernel Learning for Efficient Non-linear SVM Prediction Cijo Jose, Prasoon Goyal, Parv Aggrwal {josevancijo,prasoongoyal13,parv92}@ Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India 110 016 Manik Varma manik@ Microsoft Research India, Bangalore, India 560 001 Abstract Our objective is to ameliorate the situation by re- ducing the cost of non-linear SVM prediction while Our objective is to speed up non-linear SVM maintaining classification accuracy above an accept- prediction while maintaining classification able threshold. Speeding up SVM prediction is an im- accuracy above an acceptable limit. We gen- portant research problem which has been approached eralize Localized Multiple Kernel Learning from multiple perspectives including approximating so as to learn a tree-based primal feature the kernel function or matrix (B˘az˘avan et al., 2012; embedding which is high dimensional and Kar Karnick, 2012; Maji et al., 2013; Rahimi sparse. Primal based classification decouples Recht, 2007; 2008; Vedaldi Zisserman, 2011; 2012; prediction costs from the number of support Williams Seeger, 2001; Yang et al., 2012), reduc- vectors and our tree-structured features effi- ing the number of support vectors (Cossalter et al., ciently encode non-linearities while speeding 2011; Joachims Yu, 2009; Keerthi et al., 2006) and up prediction exponentially over the state-of

文档评论(0)

ghfa + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档