《Foundation of Machine Learning [Part03]》.pdfVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Foundations of Machine Learning Lecture 3 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Learning Bounds for Infinite Hypothesis Sets Motivation With an infinite hypothesis set H, the error bounds of the previous lecture are not informative. Is efficient learning from a finite sample possible when H is infinite? Our example of axis-aligned rectangles shows that it is possible. Can we reduce the infinite case to a finite set? Project on finite samples? Are there useful measures of complexity for infinite hypothesis sets? Mehryar Mohri - Foundations of Machine Learning page 3 This lecture Rademacher complexity Growth Function VC dimension Lower bound Mehryar Mohri - Foundations of Machine Learning page 4 Rademacher Complexity Definitions: let G be a family of functions mapping from Z to [a, b] . • Empirical Rademacher complexity of G : m 1 R (G) = E sup σ g (z ) , S i i σ g ∈G m i=1 where σ s are independent uniform random variables i taking values in {−1, +1} and S =(z , . . . , z ). 1 m • Rademacher complexity of G : Rm (G) = E [RS (G)]. S∼Dm Mehryar Mohri - Foundations of Machine Learning page 5 Rademacher Complexity Bound

文档评论(0)

ghfa + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档