WeightedGeneCo-expressionNetworkAnalysis(精品).doc

WeightedGeneCo-expressionNetworkAnalysis(精品).doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
WeightedGeneCo-expressionNetworkAnalysis(精品).doc

Weighted Gene Co-expression Network Analysis (WGCNA) R Tutorial, Part B Module Eigengene, Survival time, and Proliferation Steve Horvath Correspondence: shorvath@, /biostat/people/horvath.htm This is part B of a self-contained R software tutorial. The first few pages are very similar to those of part A, but here we focus on studying the brown module and relating individual genes to survival outcome. Thus, the reader will be able to reproduce all of our findings. This document also serves as a tutorial to weighted gene co-expression network analysis. Some familiarity with the R software is desirable but the document is fairly self-contained. This tutorial and the data files can be found at the following webpage: /labs/horvath/CoexpressionNetwork/ASPMgene More material on weighted network analysis can be found here /labs/horvath/CoexpressionNetwork/ Contents part B (the beginning overlaps with part A) *) Weighted brain cancer network construction based on *3600* most connected genes *) Gene significance and intramodular connectivity in data sets I and II *) Module Eigengene and its relationship to individual genes *) Regressing survival time on individual gene expression and the module eigengene The data and biological implications are described in part A and in the REFERENCE for this tutorial Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Shu, Q, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, Kornblum HI, Cloughesy TF, Nelson SF, Mischel PS (2006) Analysis of Oncogenic Signaling Networks in Glioblastoma Identifies ASPM as a Novel Molecular Target, PNAS | November 14, 2006 | vol. 103 | no. 46 | 17402-17407 Statistical References To cite the statistical methods please use Zhang B, Horvath S (2005) A General Framework for Weighted Gene Co-Expression Network Analysis. Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1, Article 17. /sagmb/vol4/iss1/art17 Horvath S, Dong J (2008) Geometric Interpretat

文档评论(0)

gsgtshb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档