1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
过程工业 过程工业是指如石化、电力、冶金、造纸、医药、食品等工业.它们的特点是连续性.一般来说特征可分为造型特征和面向过程的特征造型特征(又称为形状特征)是指那些实际构造出零件的特征而面向过程的特征并不实际参与零件几何形状的构造.过程工业是加工制造流程性物质产品的现代制造业。“流程性物质”是指以流体(气、液、粉体等)形态存在的物质材料。力学、电工学、机械设计基础、工业美术、造型设计基础、工程材料、人机工程学、心理学、计算机辅助设计、视觉传达设计、环境设计。1) 流体动力过程 2) 热量传递过程 3) 质量传递过程 4) 动量传递过程 5) 热力过程 6) 化学反应过程 7) 生物过程在化工生产中所处理的物料大部分都是处于液态和气态状况下,这种状态下的物体通称为流体。这些物料在静止和运动时都遵循流体力学的规律。以流体力学规律为基础规律的化工过程称为流体动力过程。一类以动量传递为主要理论基础的单元操作,主要有流体输送、沉降、过滤和混合等,在工程上主要用于物料输送、气相或液相悬浮系的分离以及液体的混合。流体动力过程应用于化工、石油、冶金、食品和环境保护等部门物料输送   化工生产中处理的物料大都是气体、液体和粉粒状固体。这些物料,根据生产要求,依次在一系列化工机器或设备中发生化学变化或物理变化,最终加工成所需要的产品。为实现生产过程的连续化,物料在机器和设备间的输送十分重要。流体(气体与液体的总称)的输送借助于流体输送机械;粉粒状固体往往也借助于气流(或液流)的能量,进行像流体那样的输送,称为气力输送(或水力输送)。气相悬浮系的分离   含有悬浮固体微粒或液滴的气体称为气相悬浮系。从气体中分离出这些悬浮物的过程称为气相悬浮系的分离。在不同场合,悬浮物颗粒直径差别很大。例如空气净化要求除去的粉尘粒径只有几微米;而气力输送的颗粒直径可达几毫米至几十毫米。细小的颗粒通称灰尘,故从气体中分离悬浮灰尘的操作又称除尘或集尘。对气相悬浮系进行分离的目的是:净化气体。例如在硫酸制造中,为防止催化剂中毒,必须除去原料气中含有砷、硒等的尘粒;在药品、感光材料和微电子产品的生产中,为保证产品质量,必须使空气净化。回收有价值的悬浮物。如从干燥器出口气体中回收产品,从流化床反应器出口气体中回收催化剂等气相悬浮系的分离方法   气相悬浮系的分离方法有:沉降,气体和悬浮物因密度不同,可使之在重力或离心力场中产生相对运动,从而实现悬浮物的分离。这两种方法相应地称为重力沉降和离心沉降,前者常用设备为降尘室,后者常用设备为旋风分离器。气体过滤,使气相悬浮系中的气体通过多孔的过滤介质,其中悬浮的固体颗粒则被截留而得以分离。常用设备为袋滤器。湿法除尘,使气相悬浮系与水(或其他液体)密切接触,悬浮物由气相而被除去。所用的典型设备有文丘里涤气器和喷雾塔等。超声波除尘,利用超声波使气体中悬浮的微小颗粒聚结成较大颗粒,再用重力沉降等方法除去。电除尘,将气相悬浮系通过高压电场,使悬浮物带有电荷,然后在电场中沉降分离。上述各种分离方法分别适用于一定的粒径范围。液相悬浮系的分离   含有悬浮固体颗粒或液滴的液体称为液相悬浮系。从液体中分离出悬浮物的过程称为液相悬浮系的分离。在化工生产中,往往由于原料中含有杂质,溶液在浓缩时析出了晶体,或液相中发生化学反应而产生沉淀,从而形成液相悬浮系。为了净化液体或得到悬浮物产品,须对悬浮系进行分离。在某些反应过程(如悬浮聚合)和传质分离过程(如萃取、浸取)中,良好的液相悬浮系是增强相际接触的主要条件,因而液相悬浮系的分离对这些过程来说是不可缺少的后续操作。液相悬浮系的分离方法   液相悬浮系的分离方法,有沉降和过滤。沉降主要用于颗粒浓度较低的悬浮系;过滤主要用于颗粒浓度较高的悬浮系。   液体的混合 这是对液体或液相悬浮系外加机械能,使之发生湍动和循环运动,从而使液体或液相悬浮系各部分组成趋于均匀的过程。在化工生产中,液体混合主要用于:加速固体的溶解或可溶液体的混合;增强气相的分散和气液接触;增进不互溶液体的分散和接触;促进固体颗粒在液体中的均匀悬浮。工业上液体混合最常用的方法是机械搅拌流体机械与工程学科(专业)研究各种以流体作为工质和能量载体的机械设备的流体动力学原理与设计,以及与流体动力学相关的复杂流动现象的实验与数值模拟。本学科以流体工程、车辆工程和动力工程等多个领域的流体动力学问题为主要研究背景,以积极为我国国防工业现代化和新型高科技兵器的开发提供理论和技术保障服务为特色,同时兼顾能源、机械、航空、航天和水利等领域的需求。   主要研究方向有:   1、多相复杂流动现象研究与应用研究方向:主要从事气固两相流动及空气滤清机理的研究;极端条件下新型车辆发动机空气滤清器的开发与研究;叶片式空气滤清器的优化设计方法的研究;铁磁流体减震机理的研究

文档评论(0)

PPT精品 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档