线性判别函数------外文翻译(原文+译文).docVIP

线性判别函数------外文翻译(原文+译文).doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
线性判别函数 5.1引言 在第三章中我们假设概率密度函数的参数形式已知,于是可以使用训练样本来估计概率密度函数的参数值.在本章中,我们将直接假定判别函数的参数形式已知,而用训练的方法来估计判别函数的参数值.我们将介绍求解判别函数的各种算法,其中一部分基于统计方法,而另一些不是.这里都不要求知道有关的概率密度函数的确切的(参数)形式,从这种意义上来说,它们都属于非参数化的方法. 在这一章中,我们将关注以下形式的判别函数:它们或者是X的各个分量的线性函数,或者是关于以X为自变量的某些函数的线性函数.线性判别函数具有许多优良的特性,因而便于进行分析.就像我们在第二章看到的一样,如果内在的概率密度函数恰当的话,那么采用线性判别函数是最优的,比如通过适当的选择特征提取方法,可以使得各个高斯函数具有相等的协方差矩阵.即使它们不是最优的,我们也愿意牺牲一些分类准确率,以换取处理简便的优点.线性判别函数的计算是相当容易的,另外,当信息比较缺乏时,线性分类器对处于最初的.尝试阶段的分类器来说也是很有吸引力的选择.它们所展示的一些非常重要的原理在第6章的神经网络中将得到更充分的应用. 寻找线性差别函数的问题将被形式为极小化准则函数的问题.以分类为目的的准则函数可以是样本风险,或者是训练误差,即对训练样本集进行分类所引起的平均损失.但在这里我们必须强调的是:尽管这个准则是很有吸引力的,但它却有很多的问题.我们的目标是能够对新的样本进行分类,但一个小的训练误差并不能保证测试误差同样的小-------这是一个吸引人而又非常微妙的问题,我们将在第9章中进一步论述这个问题.这里我们将看到,准确的计算极小风险判别函数通常是困难的,因此我们将考查一些有关的更易于分析的准则函数. 我们的注意力将在很大程度上放在收敛性用各种应用于极小化准则函数的梯度下降法的计算复杂度上,它们当中一些方法的是很相似的,这使得清晰地保持它们之间的不同变得困难,因此,我们在后面的章节里会作出总结. 5.2线性判别函数的判定面 一个判别函数是指X的各个分量的线性组合而成的函数 g(x)=w’x+w0 (1) 这里W是权向量,w0被称为阈值权或偏置.和我们在第二章所看到的一样,一般情况下有C个这样的判别函数,分别对应C类的一类.我们在后面将讨论这样的情况,但首先考虑中人两个类别的简单情况. 两类情况 对具有式(1)形式的判别函数的一个两类线性分类器来说,要求实现 以下判定规则:如果 G(x)0则判定w1,如果g(x)0,那么x可以被随意归到任意一类,但是在本章我们将它们归为未定义的.图5-1给出了一个典型的系统实现结构,是第二章所讨论的典型的模式识别系统结构的一个例子. 图5-1一个简单线性分类器,有d个输入的单元,每个对应一个输入向量在各维上的分量值.每个输入特征值xi被乘以它对应的权wi, 输出单元为这些乘积的和∑wixi.因此这d个输入单元都是线性的,产生的是它对应的特征的值.惟一的一个偏差单元总是产生常数1.0.如果w’x+w00的话,输出单元输出a+1,反之为a-1 方程g(x)=0定义了一个判定面,它把归类于w1的点与归类于w2的眯分开来.当g(x)是线性的,这个平面被称为超平面.如果x1和’x1+w0=w’x2+w0 或 W’(x1-x2)=0 这表明,w和超平面上的任意向量正交.通常,一个超平面H将特征空间分成两个半空间,即对应于W1类的决策域R1和对应于W2的决策域R2.因为当X在R1中时,g(x)0,所以判定面的法向量W指向R1,因此,有时称R1中的任何X在H的”正侧”,相应地,称R2中的任何向量在H的负侧. 判别函数g(x)是特征空间中某点X到超平面的距离的一种代数度量.或许这一点最容易从表达式 X=xp+r(w/IIwII) 看出来,这里的XP是X在H上的投影向量,r是相应的算术距离------如果为正,表示X在H的正侧;如果为负,表示X在H的负侧.于是,由于g(xp)=0,有 g(x)=w’x+w0=rIIwII 或 R=g(X)/IiwII 特别,从原点到H的距离为W0/IiwII.如果W00表明原点在H的正侧,w00表明原点在H的负侧.如果W0=0,那么g(x)有齐次形式w’x,说明超平面H通过原点.图5---2对这些代数结果给出了几何解释. 总之,线性判别函数利用一个超平面判定面把特征空间分割成两个区域.超平面的方向由法向量W确定,它的位置由阈值权W0确定.判别函数g(x)正比于x点到超平面的代数距离

文档评论(0)

嫣雨流纱 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档