双闭环三相异步电动机调压调速的系统设计与仿真课程设计.docVIP

双闭环三相异步电动机调压调速的系统设计与仿真课程设计.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第1章 绪论 1.1 双闭环三相异步电动机调压调速系统的原理及组成 调压调速即通过调节通入异步电动机的三相交流电压大小来调节转子转速的方法。理论依据来自异步电动机的机械特性方程式: 其中,p为电机的极对数; w1为定子电源角速度; U1为定子电源相电压; R2’为折算到定子侧的每相转子电阻; R1为每相定子电阻; L11为每相定子漏感; L12为折算到定子侧的每相转子漏感; S为转差率。 图1-1 异步电动机在不同电压的机械特性 由电机原理可知,当转差率s基本保持不变时,电动机的电磁转矩与定子电压的平方成正比。因此,改变定子电压就可以得到不同的人为机械特性,从而达到调节电动机转速的目的 1.2 双闭环三相异步电动机调压调速系统的工作原理 系统主电路采用3个双向晶闸管,具有体积小。控制极接线简单等优点。A.B.C为交流输入端,A 3.B3.C3为输出端,接向异步电动机定子绕组。为了保护晶闸管,在晶闸管两端接有阻容器吸收装置和压敏电阻。 1.2.1 控制电路 速度给定指令电位器BP1所给出的电压,经运算放大器N组成的速度调节器送入移相触发电路。同时,N还可以得到来自测速发电机的速度负反馈信号或来自电动机端电压的电压反馈信号,以构成闭环系统,提高调速系统的性能。 1.2.2 移相触发电路 双向晶闸管有4种触发方式。本系统采用负脉冲触发,即不论电源电压在正半周期还是负半周期,触发电路都输出负得触发脉冲。负脉冲触发所需要的门极电压和电流较小,故容易保证足够大的触发功率,且触发电路简单。TS是同步变压器,为保证触发电路在电源正负半波时都能可靠触发,又有足够的移相范围,TS采用DY11型接法。 移相触发电路采用锯齿波同步方式,可产生双脉冲并有强触发脉冲电源(+40V)经X31送到脉冲变压器的一次侧 第2章 双闭环三相异步电动机调压调速系统的设计方案 2.1 主电路设计 2.1.1 调压电路 改变加在定子上的电压是通过交流调压器实现的。目前广泛采用的交流调压器由晶闸管等器件组成。它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角的大小来调节加到定子绕组两端的端电压。这里采用三相全波星型联接的调压电路。 图2-1 调压电路原理图 2.1.2 开环调压调速 开环系统的主电路由触发电路、调压电路、电机组成。原理图如下: 图2-2 开环调压系统原理图 AT为触发装置,用于调节控制角的大小来控制晶闸管的导通角,控制晶闸管输出电压来调节加在定子绕组上的电压大小。 2.1.3 闭环调压调速 速度负反馈闭环调压调速系统的工作原理:将速度给定值与速度反馈值进行比较,比较后经速度调节器得到控制电压,再将此控制电压输入到触发装置,由触发装置输出来控制晶闸管的导通角,以控制晶闸管输出电压的高低,从而调节了加在定子绕组上的电压的大小。因此,改变了速度给定值就改变了电动机的转速。由于采用了速度负反馈从而实现了平稳、平滑的无级调速。同时当负载发生变化时,通过速度负反馈,能自动调整加在电动机定子绕组上的电压大小。由速度调节器输出的控制电压使晶闸管触发脉冲前移,使调压器的输出电压提高,导致电动机的输出转矩增大,从而使速度回升,接近给定值。 图2-3 系统调速结构图 图2-4 闭环调速系统原理图 2.2 控制回路设计 2.2.1转速检测环节和电流检测环节的设计 1)电流调节器的设计原理 电流环的控制对象又电枢回路组成的大惯性环节与晶闸管整流装置,触发器,电流互感器以及反馈滤波等一些小惯性环节组成。电流环可以校正成典型1型系统,也可以校正成典型2型系统,校正成哪种系统,取决于具体系统要求。 由于电流环的重要作用是保持电枢电流在动态过程中不超过允许值,因而,在突加给定时不希望有超调,或者超调越小越好。从这个观点来说,应该把电流环校正成典型1型系统。但是,典型1型系统在电磁惯性时间常数较大时,抗绕性能较差。恢复时间长。考虑到电流环还对电网电压波动又及时的调节功能,因此,为了提高其抗扰性能,又希望把电流环校正成典型2型系统。 2)电流环的结构的简化 电流环的结构如图2-5 所示。把电流环单独拿出来设计时,首先遇到的问题是反电势产生的反馈作用。在实际系统中,由于电磁时间常数T1远小于机电时间常数 Tm,电流调节过程往往比转速的变化过程快得多,因而也比电势E的变化快得多,反电势对电流环来说,只是一个变化缓慢的扰动,在电流调节器的快速调节过程中,可以认为E基本不变,即△E=0。这样,在设计电流环时,可以不考虑反电势变化的影响,而将电势反馈作用断开,使电流环结构得以简化。另外,在将给定滤波器和反馈滤波器两个环节等效的置于环内,使电流环结构变为单位反馈系统。最后,考虑到反馈时间常数 Ti

文档评论(0)

smdh + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档