埃博拉病毒的传播预测与控制美赛论文.doc

埃博拉病毒的传播预测与控制美赛论文.doc

  1. 1、本文档共28页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
埃博拉病毒的传播预测与控制 摘要 2014年非洲爆发了历史上最为严重的病毒疫情--埃博拉。据科学研究报道,这个病毒一旦感染人体,将有着高达90%以上的死亡率,这是一种世上最厉害的感染病毒(生物安全等级为4级),如何消灭埃博拉成为当前的首要任务。当然,疾病的传播、患病人口的预测、药物的生产和运输,都是消灭埃博拉必须考虑的因素。 根据病毒传播率、感染者人数的预测、药物的合理分配和隔离人数的比重等因素,本文运用随机微分方程、产销平衡和最优控制三种算法分别建立了随机微分方程模型、线性规划模型和最优隔离控制模型。这三个模型分别解决了埃博拉病毒的传播规律、感染者人数的预测问题、药物的运输问题和以隔离控制为决定性作用因素的优化问题。 针对模型一:将环境因素作为随机变量,结合病毒传播率,本文建立了随机微分方程模型,对以后10个月的患病人口总数进行了预测。利用数值解方法,对埃博拉病毒感染者人数进行预测,并通过仿真过程验证了疾病传播率的一个临界值,得出能使埃博拉传播速度降低直至消亡的一个条件。 针对模型二:假设几内亚、利比里亚和塞拉利昂为需求地,美国、中国、日本、俄罗斯、法国以及瑞士为药物生产地。利用产销平衡原理,建立了时间优化模型,求得产地与需求地之间的最短运输时间为15.8小时。 针对模型三:本模型基于传染病模型,利用极值原理给出了最优控制的设计方案,通过仿真,验证了最优控制方案的优越性。同时,由协态方程得到当 系统控制变量为0.50时,隔离效果最佳,也证明了隔离是控制疾病继续传播最有效的控制措施。 本文三个模型均使用的官方数据,而且内容上层层优化,互相补充,使文章所述更为具体,更为实用,为埃博拉病毒问题的解决提供了一份可靠地,可行的,可依赖的数学模型。 关键词:埃博拉病毒 预测 随机微分方程 优化问题 最优隔离控制 1.问题重述—不用翻译 1995年5月14日,扎伊尔发现罕见传染病埃博拉。2014年,埃博拉病毒首次爆发就夺走了近300人的生命,2014年再度爆发,大约4000人命丧黄泉。现在世界医学组织已经宣布:他们研究的新药物可以阻止埃博拉病毒,并非晚期病人。 本文疾病的传播、所需药物数量、可行的运输系统、运送的地点、生产疫苗或药物的速度和其他起决定性作用的因素考虑,建立一个符合实际的实用模型,可以达到优化消灭埃博拉或减小当前压力的目的。除了为此次比赛建立的模型解决方法外,为世界医学组织准备一份1-2页非技术信函,以用于他们的宣告。 2.问题分析 本文关于埃博拉病毒的传播、患病人数的预测、所需药物数量、可行的运输系统、疫苗的预防和药物的治疗等几个方面展开讨论和研究。 模型一主要解决疾病的传播和患病人口预测问题。由于人口密度、周围是否有患病人群、生活环境等因素的随机性,所以将其视为随机变量。然后本文将病毒传播率作为一个高斯白噪声过程带入常微分方程,得到关于埃博拉病毒传播的随机微分方程。此时不考虑人口的出生率、死亡率和人口的出入境情况,本文根据官方数据,得到2014年3月22号至今的感染者人数,从而得到一个疾病的传播率,进而预测未来10个月的感染者的总数。 模型二主要解决药物的运输时间与成本的问题。由于几内亚、利比里亚和塞拉利昂这三个国家患病人数最多,所以选择这三个国家作为需求地。现在具备疫苗或药物生产能力的国家:美国、中国、日本、俄国、法国和瑞士。本文选择这六个国家作为产地。本模型只考虑在生产地和需求地之间的药物运输。首先保证各国所使用的运输机为同款运输机,在运输过程中,速度均为同等速度。接下来,本文将产销平衡模型中的成本替换成运输所用时间,这样成本最低变成时间最短。然后结合模型一中的患病人口预测结果,再加上每个病人对应药量的比例系数,则计算出任意时刻所需要的药物总量。在满足各需求地需求量的前提下,本文再利用线性规划模型得到最优调运方案,即时间优化模型。 模型三在模型二的基础上,分析其他可以消灭埃博拉的决定性因素。本文使用最优隔离控制法,把易感染者、染病者、治愈者、隔离者以及总人口数作为初始值代入目标函数,则会存在一个最优控制因素,再将其对应的状态解代入协态方程,得到最优控制因素——隔离的确切最优解,再通过数值仿真完成对本文模型的最后优化。3随机微分传播模型 根据提供的官方数据得知,目前感染者人数已达1.3万人,集中分布在几内亚、利比里亚和塞拉利昂三个国家。本文针对这三个国家的患病情况,建立埃博拉病毒的随机微分模型来描述病毒的传播过程,分析并预测未来感染人数的变化规律。 3.1 符号说明 符号 符号说明 感染者人数占总人口比例 埃博拉传播过程中人与人之间的接触率 由于得了患埃博拉所造成的死亡率增加值 埃博拉病毒的传播率 平均传播率 环境干扰强度 布朗运动 3.模型假设 假设埃博拉病毒在研究过程中不

文档评论(0)

追风少年 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档